Research Article
BibTex RIS Cite
Year 2020, Volume: 15 Issue: 2, 71 - 78, 24.09.2020

Abstract

References

  • [1] Ni, X. S., & Huo, X. (2009). Another look at Huber's estimator: A new minimax estimator in regression with stochastically bounded noise. Journal of statistical planning and inference, 139(2), 503-515.
  • [2] Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in statistics (pp. 492-518). Springer, New York, NY.
  • [3] Huber, P. J., & Ronchetti, E. M. (1981). Robust statistics john wiley & sons. New York, 1(1).
  • [4] Shevlyakov, G., Morgenthaler, S., & Shurygin, A. (2008). Redescending M-estimators. Journal of Statistical Planning and Inference, 138(10), 2906-2917.
  • [5] Ferrari, D., & Yang, Y. (2010). Maximum Lq-likelihood estimation. The Annals of Statistics, 38(2), 753-783.
  • [6] Giuzio, M., Ferrari, D., & Paterlini, S. (2016). Sparse and robust normal and t-portfolios by penalized Lq-likelihood minimization. European Journal of Operational Research, 250(1), 251-261.
  • [7] Andrews, D. F., & Hampel, F. R. (2015). Robust estimates of location: Survey and advances. Princeton University Press.
  • [8] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust statistics: the approach based on influence functions (Vol. 196). John Wiley & Sons.
  • [9] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52(1-2), 479-487.
  • [10] Çankaya, M. N., & Korbel, J. (2018). Least informative distributions in maximum q-log-likelihood estimation. Physica A: Statistical Mechanics and its Applications, 509, 140-150.
  • [11] Malik, S. C., & Arora, S. (1992). Mathematical analysis. New Age International.
  • [12] Örkcü, H. H., Özsoy, V. S., Aksoy, E., & Dogan, M. I. (2015). Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison. Applied Mathematics and Computation, 268, 201-226.
  • [13] Machado, J. T. (2014). Fractional order generalized information. Entropy, 16(4), 2350-2361.
  • [14] Suyari, H. (2006). Mathematical structures derived from the q-multinomial coefficient in Tsallis statistics. Physica A: Statistical Mechanics and its Applications, 368(1), 63-82.
  • [15] Hadjiagapiou, I. A. (2011). The random field Ising model with an asymmetric and anisotropic bimodal probability distribution. Physica A: Statistical Mechanics and its Applications, 390(20), 3204-3215.
  • [16] Hadjiagapiou, I. A. (2012). The random field Ising model with an asymmetric and anisotropic trimodal probability distribution. Physica A: Statistical Mechanics and its Applications, 391(13), 3541-3555.
  • [17] Arslan, O., & Genc, A. I. (2009). The skew generalized t distribution as the scale mixture of a skew exponential power distribution and its applications in robust estimation. Statistics, 43(5), 481-498.
  • [18] Çankaya, M. N., & Korbel, J. (2017). On statistical properties of Jizba–Arimitsu hybrid entropy. Physica A: Statistical Mechanics and its Applications, 475, 1-10.
  • [19] Korbel, J. (2017). Rescaling the nonadditivity parameter in Tsallis thermostatistics. Physics Letters A, 381(32), 2588-2592.
  • [20] Jizba, P., Korbel, J., & Zatloukal, V. (2017). Tsallis thermostatics as a statistical physics of random chains. Physical Review E, 95(2), 022103.
  • [21] Elze, H. T. (2004). Introduction: Quantum Theory and Beneath?. In Decoherence and Entropy in Complex Systems (pp. 119-124). Springer, Berlin, Heidelberg.
  • [22] Jizba, P., & Korbel, J. (2016). On q-non-extensive statistics with non-Tsallisian entropy. Physica A: Statistical Mechanics and its Applications, 444, 808-827.
  • [23] Akaike, H., Petrov, B. N., & Csaki, F. (1973). Second international symposium on information theory.
  • [24] Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.
  • [25] M.N. Cankaya, Y.M. Bulut, F.Z. Dogru and O. Arslan, A bimodal extension of the generalized gamma distribution, Revista Colombiana de Estadistica, 38 (2015), no. 2, 353-370.
  • [26] Çankaya, M. N. (2018). Asymmetric bimodal exponential power distribution on the real line. Entropy, 20(1), 23.
  • [27] Çankaya, M. N., & Arslan, O. (2020). On the robustness properties for maximum likelihood estimators of parameters in exponential power and generalized T distributions. Communications in Statistics-Theory and Methods, 49(3), 607-630.
  • [28] Ronchetti, E. (1997). Robustness aspects of model choice. Statistica Sinica, 327-338.

On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions

Year 2020, Volume: 15 Issue: 2, 71 - 78, 24.09.2020

Abstract

M-estimation as generalization of maximum likelihood estimation (MLE) method is well-known approach to get the robust estimations of location and scale parameters in objective function ρ especially. Maximum log_q likelihood estimation (MLqE) method uses different objective function called as ρ_(log_q ). These objective functions are called as M-functions which can be used to fit data set. The least informative distribution (LID) is convex combination of two probability density functions f_0 and f_1. In this study, the location and scale parameters in any objective functions ρ_log, ρ_(log_q ) and ψ_(log_q ) (f_0,f_1 ) which are from MLE, MLqE and LIDs in MLqE are estimated robustly and simultaneously. The probability density functions which are f_0 and f_1 underlying and contamination distributions respectively are chosen from exponential power (EP) distributions, since EP has shape parameter α to fit data efficiently. In order to estimate the location μ and scale σ parameters, Huber M-estimation, MLE of generalized t (Gt) distribution are also used. Finally, we test the fitting performance of objective functions by using a real data set. The numerical results showed that ψ_(log_q ) (f_0,f_1 ) is more resistance values of estimates for μ and σ when compared with other ρ functions.

References

  • [1] Ni, X. S., & Huo, X. (2009). Another look at Huber's estimator: A new minimax estimator in regression with stochastically bounded noise. Journal of statistical planning and inference, 139(2), 503-515.
  • [2] Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in statistics (pp. 492-518). Springer, New York, NY.
  • [3] Huber, P. J., & Ronchetti, E. M. (1981). Robust statistics john wiley & sons. New York, 1(1).
  • [4] Shevlyakov, G., Morgenthaler, S., & Shurygin, A. (2008). Redescending M-estimators. Journal of Statistical Planning and Inference, 138(10), 2906-2917.
  • [5] Ferrari, D., & Yang, Y. (2010). Maximum Lq-likelihood estimation. The Annals of Statistics, 38(2), 753-783.
  • [6] Giuzio, M., Ferrari, D., & Paterlini, S. (2016). Sparse and robust normal and t-portfolios by penalized Lq-likelihood minimization. European Journal of Operational Research, 250(1), 251-261.
  • [7] Andrews, D. F., & Hampel, F. R. (2015). Robust estimates of location: Survey and advances. Princeton University Press.
  • [8] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust statistics: the approach based on influence functions (Vol. 196). John Wiley & Sons.
  • [9] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52(1-2), 479-487.
  • [10] Çankaya, M. N., & Korbel, J. (2018). Least informative distributions in maximum q-log-likelihood estimation. Physica A: Statistical Mechanics and its Applications, 509, 140-150.
  • [11] Malik, S. C., & Arora, S. (1992). Mathematical analysis. New Age International.
  • [12] Örkcü, H. H., Özsoy, V. S., Aksoy, E., & Dogan, M. I. (2015). Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison. Applied Mathematics and Computation, 268, 201-226.
  • [13] Machado, J. T. (2014). Fractional order generalized information. Entropy, 16(4), 2350-2361.
  • [14] Suyari, H. (2006). Mathematical structures derived from the q-multinomial coefficient in Tsallis statistics. Physica A: Statistical Mechanics and its Applications, 368(1), 63-82.
  • [15] Hadjiagapiou, I. A. (2011). The random field Ising model with an asymmetric and anisotropic bimodal probability distribution. Physica A: Statistical Mechanics and its Applications, 390(20), 3204-3215.
  • [16] Hadjiagapiou, I. A. (2012). The random field Ising model with an asymmetric and anisotropic trimodal probability distribution. Physica A: Statistical Mechanics and its Applications, 391(13), 3541-3555.
  • [17] Arslan, O., & Genc, A. I. (2009). The skew generalized t distribution as the scale mixture of a skew exponential power distribution and its applications in robust estimation. Statistics, 43(5), 481-498.
  • [18] Çankaya, M. N., & Korbel, J. (2017). On statistical properties of Jizba–Arimitsu hybrid entropy. Physica A: Statistical Mechanics and its Applications, 475, 1-10.
  • [19] Korbel, J. (2017). Rescaling the nonadditivity parameter in Tsallis thermostatistics. Physics Letters A, 381(32), 2588-2592.
  • [20] Jizba, P., Korbel, J., & Zatloukal, V. (2017). Tsallis thermostatics as a statistical physics of random chains. Physical Review E, 95(2), 022103.
  • [21] Elze, H. T. (2004). Introduction: Quantum Theory and Beneath?. In Decoherence and Entropy in Complex Systems (pp. 119-124). Springer, Berlin, Heidelberg.
  • [22] Jizba, P., & Korbel, J. (2016). On q-non-extensive statistics with non-Tsallisian entropy. Physica A: Statistical Mechanics and its Applications, 444, 808-827.
  • [23] Akaike, H., Petrov, B. N., & Csaki, F. (1973). Second international symposium on information theory.
  • [24] Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.
  • [25] M.N. Cankaya, Y.M. Bulut, F.Z. Dogru and O. Arslan, A bimodal extension of the generalized gamma distribution, Revista Colombiana de Estadistica, 38 (2015), no. 2, 353-370.
  • [26] Çankaya, M. N. (2018). Asymmetric bimodal exponential power distribution on the real line. Entropy, 20(1), 23.
  • [27] Çankaya, M. N., & Arslan, O. (2020). On the robustness properties for maximum likelihood estimators of parameters in exponential power and generalized T distributions. Communications in Statistics-Theory and Methods, 49(3), 607-630.
  • [28] Ronchetti, E. (1997). Robustness aspects of model choice. Statistica Sinica, 327-338.
There are 28 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Mehmet Niyazi Çankaya 0000-0002-2933-857X

Publication Date September 24, 2020
Submission Date February 12, 2020
Published in Issue Year 2020 Volume: 15 Issue: 2

Cite

APA Çankaya, M. N. (2020). On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions. Turkish Journal of Science and Technology, 15(2), 71-78.
AMA Çankaya MN. On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions. TJST. September 2020;15(2):71-78.
Chicago Çankaya, Mehmet Niyazi. “On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions”. Turkish Journal of Science and Technology 15, no. 2 (September 2020): 71-78.
EndNote Çankaya MN (September 1, 2020) On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions. Turkish Journal of Science and Technology 15 2 71–78.
IEEE M. N. Çankaya, “On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions”, TJST, vol. 15, no. 2, pp. 71–78, 2020.
ISNAD Çankaya, Mehmet Niyazi. “On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions”. Turkish Journal of Science and Technology 15/2 (September 2020), 71-78.
JAMA Çankaya MN. On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions. TJST. 2020;15:71–78.
MLA Çankaya, Mehmet Niyazi. “On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions”. Turkish Journal of Science and Technology, vol. 15, no. 2, 2020, pp. 71-78.
Vancouver Çankaya MN. On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions. TJST. 2020;15(2):71-8.