Research Article
BibTex RIS Cite
Year 2021, Volume: 16 Issue: 1, 39 - 46, 15.03.2021

Abstract

References

  • 1. Pelckmans K., Brabante, J.D., Suykens J.A.K., Moor B.D. Handling missing values in support vector machine classifiers. Neural Networks, 684-692. 2005.
  • 2. Jerez, J.M., Molina I., Subirats J.L., Franco L., Missing data imputation in breast cancer prognosis. Processing of the fourth IASTED International Conference Biomedical Engineering. 2006.
  • 3. Mohamed S. & Marwala T., Neural Network Based Techniques for Estimating Missing Data in Databases. 16th Annual Symposium of the Pattern Recognition Association of South Africa. 2005.
  • 4. Alpar, R., Uygulamalı Çok Değişkenli İstatistiksel Yöntemler. 135-157. Nobel Kitabevi. 2010
  • 5. Bal C., Özdamar K. Eksik Gözlem Sorununun Türetilmiş Veri Setleri Yardımıyla Çözümlenmesi. Osmangazi Üniversitesi Tıp Fakültesi Dergisi, 26 (2): 67-76. 2004.
  • 6. Menengiç Y. The Comparison of Missing Value Analysis Methods. MSc, Ondokuz Mayıs University, Samsun, Turkey, 2015.

Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation

Year 2021, Volume: 16 Issue: 1, 39 - 46, 15.03.2021

Abstract

To complete missing values in a dataset is crucial for data mining and machine learning applications. If any parameter of a dataset has missing values, the values of the other parameters corresponding to those missing values should not be excluded from the dataset in order to prevent information in the dataset. Missing values should be handled carefully to avoid their affecting analyses and to prevent loss of information. There are many methods to predict missing values (imputation) that take into account other values of the relevant parameter, but these methods do not consider other parameters. In this study, an algorithm considering other parameters is proposed and its performance is compared with methods that calculate missing data without considering other parameters. The proposed method (CBRI) has been tested with a real dataset, and much more successful results have been obtained compared to the two commonly used imputation methods, mean imputation and median imputation.

References

  • 1. Pelckmans K., Brabante, J.D., Suykens J.A.K., Moor B.D. Handling missing values in support vector machine classifiers. Neural Networks, 684-692. 2005.
  • 2. Jerez, J.M., Molina I., Subirats J.L., Franco L., Missing data imputation in breast cancer prognosis. Processing of the fourth IASTED International Conference Biomedical Engineering. 2006.
  • 3. Mohamed S. & Marwala T., Neural Network Based Techniques for Estimating Missing Data in Databases. 16th Annual Symposium of the Pattern Recognition Association of South Africa. 2005.
  • 4. Alpar, R., Uygulamalı Çok Değişkenli İstatistiksel Yöntemler. 135-157. Nobel Kitabevi. 2010
  • 5. Bal C., Özdamar K. Eksik Gözlem Sorununun Türetilmiş Veri Setleri Yardımıyla Çözümlenmesi. Osmangazi Üniversitesi Tıp Fakültesi Dergisi, 26 (2): 67-76. 2004.
  • 6. Menengiç Y. The Comparison of Missing Value Analysis Methods. MSc, Ondokuz Mayıs University, Samsun, Turkey, 2015.
There are 6 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section TJST
Authors

Uğur Üresin 0000-0002-9100-9697

Publication Date March 15, 2021
Submission Date November 12, 2020
Published in Issue Year 2021 Volume: 16 Issue: 1

Cite

APA Üresin, U. (2021). Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation. Turkish Journal of Science and Technology, 16(1), 39-46.
AMA Üresin U. Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation. TJST. March 2021;16(1):39-46.
Chicago Üresin, Uğur. “Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation”. Turkish Journal of Science and Technology 16, no. 1 (March 2021): 39-46.
EndNote Üresin U (March 1, 2021) Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation. Turkish Journal of Science and Technology 16 1 39–46.
IEEE U. Üresin, “Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation”, TJST, vol. 16, no. 1, pp. 39–46, 2021.
ISNAD Üresin, Uğur. “Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation”. Turkish Journal of Science and Technology 16/1 (March 2021), 39-46.
JAMA Üresin U. Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation. TJST. 2021;16:39–46.
MLA Üresin, Uğur. “Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation”. Turkish Journal of Science and Technology, vol. 16, no. 1, 2021, pp. 39-46.
Vancouver Üresin U. Correlation Based Regression Imputation (CBRI) Method for Missing Data Imputation. TJST. 2021;16(1):39-46.