Research Article
BibTex RIS Cite
Year 2021, Volume: 16 Issue: 1, 65 - 84, 15.03.2021

Abstract

References

  • 1. Huang, Q., Huang, X., Liu, L., Lin, Y., Long, X., & Li, X. (2018). A case-oriented web-based training system for breast cancer diagnosis. Computer Methods and Programs in Biomedicine, 156, 73–83. http://doi.org/10.1016/j.cmpb.2017.12.028.
  • 1. Huang, Q., Huang, X., Liu, L., Lin, Y., Long, X., & Li, X. (2018). A case-oriented web-based training system for breast cancer diagnosis. Computer Methods and Programs in Biomedicine, 156, 73–83. http://doi.org/10.1016/j.cmpb.2017.12.028.
  • 2. Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep Convolutional Neural Networks for breast cancer screening. Computer Methods and Programs in Biomedicine, 157, 19–30. http://doi.org/10.1016/j.cmpb.2018.01.011.
  • 2. Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep Convolutional Neural Networks for breast cancer screening. Computer Methods and Programs in Biomedicine, 157, 19–30. http://doi.org/10.1016/j.cmpb.2018.01.011.
  • 3. Dhahbi, S., Barhoumi, W., Kurek, J., Swiderski, B., Kruk, M., & Zagrouba, E. (2018). False-positive reduction in computer-aided mass detection using mammographic texture analysis and classification. Computer Methods and Programs in Biomedicine, 160, 75–83. http://doi.org/10.1016/j.cmpb.2018.03.026.
  • 3. Dhahbi, S., Barhoumi, W., Kurek, J., Swiderski, B., Kruk, M., & Zagrouba, E. (2018). False-positive reduction in computer-aided mass detection using mammographic texture analysis and classification. Computer Methods and Programs in Biomedicine, 160, 75–83. http://doi.org/10.1016/j.cmpb.2018.03.026.
  • 4. Rezk, E., Awan, Z., Islam, F., Jaoua, A., Al Maadeed, S., Zhang, N., Rajpoot, N. (2017). Conceptual data sampling for breast cancer histology image classification. Computers in Biology and Medicine, 89(July), 59–67. http://doi.org/10.1016/j.compbiomed.2017.07.018.
  • 4. Rezk, E., Awan, Z., Islam, F., Jaoua, A., Al Maadeed, S., Zhang, N., Rajpoot, N. (2017). Conceptual data sampling for breast cancer histology image classification. Computers in Biology and Medicine, 89(July), 59–67. http://doi.org/10.1016/j.compbiomed.2017.07.018.
  • 5. Aswathy, M. A., & Jagannath, M. (2016). Detection of breast cancer on digital histopathology images: Present status and future possibilities. Informatics in Medicine Unlocked, 8(October 2016), 74–79. http://doi.org/10.1016/j.imu.2016.11.001.
  • 5. Aswathy, M. A., & Jagannath, M. (2016). Detection of breast cancer on digital histopathology images: Present status and future possibilities. Informatics in Medicine Unlocked, 8(October 2016), 74–79. http://doi.org/10.1016/j.imu.2016.11.001.
  • 6. Khalilabad, N. D., Hassanpour, H., & Abbaszadegan, M. R. (2016). Fully automatic classification of breast cancer microarray images. Journal of Electrical Systems and Information Technology, 3(2), 348–359. http://doi.org/10.1016/j.jesit.2016.06.001.
  • 6. Khalilabad, N. D., Hassanpour, H., & Abbaszadegan, M. R. (2016). Fully automatic classification of breast cancer microarray images. Journal of Electrical Systems and Information Technology, 3(2), 348–359. http://doi.org/10.1016/j.jesit.2016.06.001.
  • 7. Saha, M., Chakraborty, C., & Racoceanu, D. (2018). Efficient deep learning model for mitosis detection using breast histopathology images. Computerized Medical Imaging and Graphics, 64(June 2017), 29–40. http://doi.org/10.1016/j.compmedimag.2017.12.001.
  • 7. Saha, M., Chakraborty, C., & Racoceanu, D. (2018). Efficient deep learning model for mitosis detection using breast histopathology images. Computerized Medical Imaging and Graphics, 64(June 2017), 29–40. http://doi.org/10.1016/j.compmedimag.2017.12.001.
  • 8. Robertson, S., Azizpour, H., Smith, K., & Hartman, J. (2018). Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Translational Research, 194, 19–35. http://doi.org/10.1016/j.trsl.2017.10.010.
  • 8. Robertson, S., Azizpour, H., Smith, K., & Hartman, J. (2018). Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Translational Research, 194, 19–35. http://doi.org/10.1016/j.trsl.2017.10.010.
  • 9. Wang, P., Hu, X., Li, Y., Liu, Q., & Zhu, X. (2016). Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Signal Processing, 122, 1–13. http://doi.org/10.1016/j.sigpro.2015.11.011.
  • 9. Wang, P., Hu, X., Li, Y., Liu, Q., & Zhu, X. (2016). Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Signal Processing, 122, 1–13. http://doi.org/10.1016/j.sigpro.2015.11.011.
  • 10. Peng, L., Chen, W., Zhou, W., Li, F., Yang, J., & Zhang, J. (2016). An immune-inspired semi-supervised algorithm for breast cancer diagnosis. Computer Methods and Programs in Biomedicine, 134(61472092), 259–265. http://doi.org/10.1016/j.cmpb.2016.07.020.
  • 10. Peng, L., Chen, W., Zhou, W., Li, F., Yang, J., & Zhang, J. (2016). An immune-inspired semi-supervised algorithm for breast cancer diagnosis. Computer Methods and Programs in Biomedicine, 134(61472092), 259–265. http://doi.org/10.1016/j.cmpb.2016.07.020.
  • 11. Berbar, M. A. (2018). Hybrid methods for feature extraction for breast masses classification. Egyptian Informatics Journal, 19(1), 63–73. http://doi.org/10.1016/j.eij.2017.08.001.
  • 11. Berbar, M. A. (2018). Hybrid methods for feature extraction for breast masses classification. Egyptian Informatics Journal, 19(1), 63–73. http://doi.org/10.1016/j.eij.2017.08.001.
  • 12. Carvalho, E. D., de Carvalho Filho, A. O., de Sousa, A. D., Silva, A. C., & Gattass, M. (2018). Method of differentiation of benign and malignant masses in digital mammograms using texture analysis based on phylogenetic diversity. Computers & Electrical Engineering, 67(November 2017), 210–222. http://doi.org/10.1016/j.compeleceng.2018.03.038.
  • 12. Carvalho, E. D., de Carvalho Filho, A. O., de Sousa, A. D., Silva, A. C., & Gattass, M. (2018). Method of differentiation of benign and malignant masses in digital mammograms using texture analysis based on phylogenetic diversity. Computers & Electrical Engineering, 67(November 2017), 210–222. http://doi.org/10.1016/j.compeleceng.2018.03.038.
  • 13. Cherif, W. (2018). Optimization of K-NN algorithm by clustering and reliability coefficients: application to breast cancer diagnosis. Procedia Computer Science, 127, 293–299. http://doi.org/10.1016/j.procs.2018.01.125.
  • 13. Cherif, W. (2018). Optimization of K-NN algorithm by clustering and reliability coefficients: application to breast cancer diagnosis. Procedia Computer Science, 127, 293–299. http://doi.org/10.1016/j.procs.2018.01.125.
  • 14. Li, Y., Chen, H., Rohde, G. K., Yao, C., & Cheng, L. (2015). Texton analysis for mass classification in mammograms. Pattern Recognition Letters, 52, 87–93. http://doi.org/10.1016/j.patrec.2014.10.008.
  • 14. Li, Y., Chen, H., Rohde, G. K., Yao, C., & Cheng, L. (2015). Texton analysis for mass classification in mammograms. Pattern Recognition Letters, 52, 87–93. http://doi.org/10.1016/j.patrec.2014.10.008.
  • 15. Sun, W., Tseng, T. L. B., Zhang, J., & Qian, W. (2017). Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Computerized Medical Imaging and Graphics, 57, 4–9. http://doi.org/10.1016/j.compmedimag.2016.07.004.
  • 15. Sun, W., Tseng, T. L. B., Zhang, J., & Qian, W. (2017). Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Computerized Medical Imaging and Graphics, 57, 4–9. http://doi.org/10.1016/j.compmedimag.2016.07.004.
  • 16. Yassin, N. I. R., Omran, S., El Houby, E. M. F., & Allam, H. (2018). Machine learning techniques for breast cancer computer-aided diagnosis using different image modalities: A systematic review. Computer Methods and Programs in Biomedicine, 156, 25–45. http://doi.org/10.1016/j.cmpb.2017.12.012.
  • 16. Yassin, N. I. R., Omran, S., El Houby, E. M. F., & Allam, H. (2018). Machine learning techniques for breast cancer computer-aided diagnosis using different image modalities: A systematic review. Computer Methods and Programs in Biomedicine, 156, 25–45. http://doi.org/10.1016/j.cmpb.2017.12.012.
  • 17. Majid, A., Ali, S., Iqbal, M., & Kausar, N. (2014). Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Computer Methods and Programs in Biomedicine, 113(3), 792–808. http://doi.org/10.1016/j.cmpb.2014.01.001.
  • 17. Majid, A., Ali, S., Iqbal, M., & Kausar, N. (2014). Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Computer Methods and Programs in Biomedicine, 113(3), 792–808. http://doi.org/10.1016/j.cmpb.2014.01.001.
  • 18. Sayed, A. M., Zaghloul, E., & Nassef, T. M. (2016). Automatic Classification of Breast Tumors Using Features Extracted from Magnetic Resonance Images. Procedia Computer Science, 95, 392–398. http://doi.org/10.1016/j.procs.2016.09.350.
  • 18. Sayed, A. M., Zaghloul, E., & Nassef, T. M. (2016). Automatic Classification of Breast Tumors Using Features Extracted from Magnetic Resonance Images. Procedia Computer Science, 95, 392–398. http://doi.org/10.1016/j.procs.2016.09.350.
  • 19. De Sampaio, W. B., Silva, A. C., De Paiva, A. C., & Gattass, M. (2015). Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, LBP and SVM. Expert Systems with Applications, 42(22), 8911–8928. http://doi.org/10.1016/j.eswa.2015.07.046.
  • 19. De Sampaio, W. B., Silva, A. C., De Paiva, A. C., & Gattass, M. (2015). Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, LBP and SVM. Expert Systems with Applications, 42(22), 8911–8928. http://doi.org/10.1016/j.eswa.2015.07.046.
  • 20. Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). Optimal breast cancer classification using Gauss–Newton representation based algorithm. Expert Systems with Applications, 85, 134–145. http://doi.org/10.1016/j.eswa.2017.05.035.
  • 20. Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). Optimal breast cancer classification using Gauss–Newton representation based algorithm. Expert Systems with Applications, 85, 134–145. http://doi.org/10.1016/j.eswa.2017.05.035.
  • 21. Pak, F., Kanan, H. R., & Alikhassi, A. (2015). Breast cancer detection and classification in digital mammography based on Non-Subsampled Contourlet Transform (NSCT) and Super Resolution. Computer Methods and Programs in Biomedicine, 122(2), 89–107. http://doi.org/10.1016/j.cmpb.2015.06.009.
  • 21. Pak, F., Kanan, H. R., & Alikhassi, A. (2015). Breast cancer detection and classification in digital mammography based on Non-Subsampled Contourlet Transform (NSCT) and Super Resolution. Computer Methods and Programs in Biomedicine, 122(2), 89–107. http://doi.org/10.1016/j.cmpb.2015.06.009.
  • 22. Dehghan Khalilabad, N., & Hassanpour, H. (2017). Employing image processing techniques for cancer detection using microarray images. Computers in Biology and Medicine, 81(December 2016), 139–147. http://doi.org/10.1016/j.compbiomed.2016.12.012.
  • 22. Dehghan Khalilabad, N., & Hassanpour, H. (2017). Employing image processing techniques for cancer detection using microarray images. Computers in Biology and Medicine, 81(December 2016), 139–147. http://doi.org/10.1016/j.compbiomed.2016.12.012.
  • 23. Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299–317. http://doi.org/10.1016/j.patcog.2009.05.012.
  • 23. Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299–317. http://doi.org/10.1016/j.patcog.2009.05.012.
  • 24. Bhardwaj, A., & Tiwari, A. (2015). Breast cancer diagnosis using Genetically Optimized Neural Network model. Expert Systems with Applications, 42(10), 4611–4620. http://doi.org/10.1016/j.eswa.2015.01.065.
  • 24. Bhardwaj, A., & Tiwari, A. (2015). Breast cancer diagnosis using Genetically Optimized Neural Network model. Expert Systems with Applications, 42(10), 4611–4620. http://doi.org/10.1016/j.eswa.2015.01.065.
  • 25. Kandlikar, S. G., Perez-Raya, I., Raghupathi, P. A., Gonzalez-Hernandez, J. L., Dabydeen, D., Medeiros, L., & Phatak, P. (2017). Infrared imaging technology for breast cancer detection – Current status, protocols and new directions. International Journal of Heat and Mass Transfer, 108, 2303–2320. http://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086.
  • 25. Kandlikar, S. G., Perez-Raya, I., Raghupathi, P. A., Gonzalez-Hernandez, J. L., Dabydeen, D., Medeiros, L., & Phatak, P. (2017). Infrared imaging technology for breast cancer detection – Current status, protocols and new directions. International Journal of Heat and Mass Transfer, 108, 2303–2320. http://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086.
  • 26. Nilashi, M., Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017). A knowledge-based system for breast cancer classification using fuzzy logic method. Telematics and Informatics, 34(4), 133–144. http://doi.org/10.1016/j.tele.2017.01.007.
  • 26. Nilashi, M., Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017). A knowledge-based system for breast cancer classification using fuzzy logic method. Telematics and Informatics, 34(4), 133–144. http://doi.org/10.1016/j.tele.2017.01.007.
  • 27. Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound in Medicine and Biology, 44(1), 37–70. http://doi.org/10.1016/j.ultrasmedbio.2017.09.012.
  • 27. Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound in Medicine and Biology, 44(1), 37–70. http://doi.org/10.1016/j.ultrasmedbio.2017.09.012.
  • 28. Rastghalam, R., & Pourghassem, H. (2016). Breast cancer detection using MRF-based probable texture feature and decision-level fusion-based classification using HMM on thermography images. Pattern Recognition, 51, 176–186. http://doi.org/10.1016/j.patcog.2015.09.009.
  • 28. Rastghalam, R., & Pourghassem, H. (2016). Breast cancer detection using MRF-based probable texture feature and decision-level fusion-based classification using HMM on thermography images. Pattern Recognition, 51, 176–186. http://doi.org/10.1016/j.patcog.2015.09.009.
  • 29. Karabadji, N. E. I., Seridi, H., Bousetouane, F., Dhifli, W., & Aridhi, S. (2017). An evolutionary scheme for decision tree construction. Knowledge-Based Systems, 119, 166–177. http://doi.org/10.1016/j.knosys.2016.12.011.
  • 29. Karabadji, N. E. I., Seridi, H., Bousetouane, F., Dhifli, W., & Aridhi, S. (2017). An evolutionary scheme for decision tree construction. Knowledge-Based Systems, 119, 166–177. http://doi.org/10.1016/j.knosys.2016.12.011.
  • 30. Wang, H., Zheng, B., Yoon, S. W., & Ko, H. S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2), 687–699. http://doi.org/10.1016/j.ejor.2017.12.001.
  • 30. Wang, H., Zheng, B., Yoon, S. W., & Ko, H. S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2), 687–699. http://doi.org/10.1016/j.ejor.2017.12.001.
  • 31. Kaymak, S., Helwan, A., & Uzun, D. (2017). Breast cancer image classification using artificial neural networks. Procedia Computer Science, 120, 126–131. http://doi.org/10.1016/j.procs.2017.11.219.
  • 31. Kaymak, S., Helwan, A., & Uzun, D. (2017). Breast cancer image classification using artificial neural networks. Procedia Computer Science, 120, 126–131. http://doi.org/10.1016/j.procs.2017.11.219.
  • 32. Mohammed, M. A., Al-Khateeb, B., Rashid, A. N., Ibrahim, D. A., Abd Ghani, M. K., & Mostafa, S. A. (2018). Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Computers and Electrical Engineering, 0, 1–12. http://doi.org/10.1016/j.compeleceng.2018.01.033.
  • 32. Mohammed, M. A., Al-Khateeb, B., Rashid, A. N., Ibrahim, D. A., Abd Ghani, M. K., & Mostafa, S. A. (2018). Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Computers and Electrical Engineering, 0, 1–12. http://doi.org/10.1016/j.compeleceng.2018.01.033.
  • 33. Karabatak, M. (2015). A new classifier for breast cancer detection based on Naïve Bayesian. Measurement: Journal of the International Measurement Confederation, 72, 32–36. http://doi.org/10.1016/j.measurement.2015.04.028.
  • 33. Karabatak, M. (2015). A new classifier for breast cancer detection based on Naïve Bayesian. Measurement: Journal of the International Measurement Confederation, 72, 32–36. http://doi.org/10.1016/j.measurement.2015.04.028.
  • 34. Lee, M. Y., & Yang, C. S. (2010). Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Computer Methods and Programs in Biomedicine, 100(3), 269–282. http://doi.org/10.1016/j.cmpb.2010.04.014.
  • 34. Lee, M. Y., & Yang, C. S. (2010). Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Computer Methods and Programs in Biomedicine, 100(3), 269–282. http://doi.org/10.1016/j.cmpb.2010.04.014.
  • 35. Francis, S. V., Sasikala, M., Bhavani Bharathi, G., & Jaipurkar, S. D. (2014). Breast cancer detection in rotational thermography images using texture features. Infrared Physics and Technology, 67, 490–496. http://doi.org/10.1016/j.infrared.2014.08.019.
  • 35. Francis, S. V., Sasikala, M., Bhavani Bharathi, G., & Jaipurkar, S. D. (2014). Breast cancer detection in rotational thermography images using texture features. Infrared Physics and Technology, 67, 490–496. http://doi.org/10.1016/j.infrared.2014.08.019.
  • 36. Etehadtavakol, M., Chandran, V., Ng, E. Y. K., & Kafieh, R. (2013). Breast cancer detection from thermal images using bispectral invariant features. International Journal of Thermal Sciences, 69, 21–36. http://doi.org/10.1016/j.ijthermalsci.2013.03.001.
  • 36. Etehadtavakol, M., Chandran, V., Ng, E. Y. K., & Kafieh, R. (2013). Breast cancer detection from thermal images using bispectral invariant features. International Journal of Thermal Sciences, 69, 21–36. http://doi.org/10.1016/j.ijthermalsci.2013.03.001.
  • 37. Abdel-Nasser, M., Saleh, A., Moreno, A., & Puig, D. (2016). Automatic nipple detection in breast thermograms. Expert Systems with Applications, 64, 365–374. http://doi.org/10.1016/j.eswa.2016.08.026.
  • 37. Abdel-Nasser, M., Saleh, A., Moreno, A., & Puig, D. (2016). Automatic nipple detection in breast thermograms. Expert Systems with Applications, 64, 365–374. http://doi.org/10.1016/j.eswa.2016.08.026.
  • 38. Li, J. B., Wang, Y. H., & Tang, L. L. (2012). Mammogram-based discriminant fusion analysis for breast cancer diagnosis. Clinical Imaging, 36(6), 710–716. https://doi.org/10.1016/j.clinimag.2012.01.041.
  • 38. Li, J. B., Wang, Y. H., & Tang, L. L. (2012). Mammogram-based discriminant fusion analysis for breast cancer diagnosis. Clinical Imaging, 36(6), 710–716. https://doi.org/10.1016/j.clinimag.2012.01.041.
  • 39. Li, J. B., Peng, Y., & Liu, D. (2013). Quasiconformal kernel common locality discriminant analysis with application to breast cancer diagnosis. Information Sciences, 223, 256–269. https://doi.org/10.1016/j.ins.2012.10.016.
  • 39. Li, J. B., Peng, Y., & Liu, D. (2013). Quasiconformal kernel common locality discriminant analysis with application to breast cancer diagnosis. Information Sciences, 223, 256–269. https://doi.org/10.1016/j.ins.2012.10.016.
  • 40. Shi, Y., Dai, D., Liu, C., & Yan, H. (2009). Sparse discriminant analysis for breast cancer biomarker identification and classification. Progress in Natural Science, 19(11), 1635–1641. https://doi.org/10.1016/j.pnsc.2009.04.013.
  • 40. Shi, Y., Dai, D., Liu, C., & Yan, H. (2009). Sparse discriminant analysis for breast cancer biomarker identification and classification. Progress in Natural Science, 19(11), 1635–1641. https://doi.org/10.1016/j.pnsc.2009.04.013.
  • 41. Elyasi, I., Pourmina, M. A., & Moin, M. S. (2016). Speckle reduction in breast cancer ultrasound images by using homogeneity modified bayes shrink. Measurement: Journal of the International Measurement Confederation, 91, 55–65. https://doi.org/10.1016/j.measurement.2016.05.025.
  • 41. Elyasi, I., Pourmina, M. A., & Moin, M. S. (2016). Speckle reduction in breast cancer ultrasound images by using homogeneity modified bayes shrink. Measurement: Journal of the International Measurement Confederation, 91, 55–65. https://doi.org/10.1016/j.measurement.2016.05.025.
  • 42. Amin, K. M., Shahin, A. I., & Guo, Y. (2016). A novel breast tumor classification algorithm using neutrosophic score features. Measurement: Journal of the International Measurement Confederation, 81, 210–220. https://doi.org/10.1016/j.measurement.2015.12.013.
  • 42. Amin, K. M., Shahin, A. I., & Guo, Y. (2016). A novel breast tumor classification algorithm using neutrosophic score features. Measurement: Journal of the International Measurement Confederation, 81, 210–220. https://doi.org/10.1016/j.measurement.2015.12.013.
  • 43. Singh, B. K., Verma, K., Thoke, A. S., & Suri, J. S. (2017). Risk stratification of 2D ultrasound-based breast lesions using hybrid feature selection in machine learning paradigm. Measurement: Journal of the International Measurement Confederation, 105, 146–157. https://doi.org/10.1016/j.measurement.2017.01.016.
  • 43. Singh, B. K., Verma, K., Thoke, A. S., & Suri, J. S. (2017). Risk stratification of 2D ultrasound-based breast lesions using hybrid feature selection in machine learning paradigm. Measurement: Journal of the International Measurement Confederation, 105, 146–157. https://doi.org/10.1016/j.measurement.2017.01.016.
  • 44. Fenster, A., Surry, K., Smith, W., & Downey, D. B. (2004). The use of three-dimensional ultrasound imaging in breast biopsy and prostate therapy. Measurement: Journal of the International Measurement Confederation, 36(3–4), 245–256. https://doi.org/10.1016/j.measurement.2004.09.013.
  • 44. Fenster, A., Surry, K., Smith, W., & Downey, D. B. (2004). The use of three-dimensional ultrasound imaging in breast biopsy and prostate therapy. Measurement: Journal of the International Measurement Confederation, 36(3–4), 245–256. https://doi.org/10.1016/j.measurement.2004.09.013.
  • 45. Masamha, T., Mnkandla, E., Jaison, A. (2017, September). Logistic regression analysis of information communication technology projects’ critical success factors: A focus on computer networking projects. InAFRICON, IEEE, pp. 963-967, 2017.
  • 45. Masamha, T., Mnkandla, E., Jaison, A. (2017, September). Logistic regression analysis of information communication technology projects’ critical success factors: A focus on computer networking projects. InAFRICON, IEEE, pp. 963-967, 2017.
  • 46. Hai, Y., Wong, S. Y., Yuen, K. Y., Cheng, V. C., Tsui, K. L. (2011, July). Logistic regression analysis for Predicting Methicillin-resistant Staphylococcus Aureus (MRSA) in-hospital mortality. In Intelligence and Security Informatics (ISI), 2011 IEEE International Conference, pp. 349-353, 2011.
  • 46. Hai, Y., Wong, S. Y., Yuen, K. Y., Cheng, V. C., Tsui, K. L. (2011, July). Logistic regression analysis for Predicting Methicillin-resistant Staphylococcus Aureus (MRSA) in-hospital mortality. In Intelligence and Security Informatics (ISI), 2011 IEEE International Conference, pp. 349-353, 2011.
  • 47. Li, M., Yuan, B., 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 26(5), 527-532, 2005.
  • 47. Li, M., Yuan, B., 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 26(5), 527-532, 2005.
  • 48. Gyamfi, K. S., Brusey, J., Hunt, A., Gaura, E., Linear classifier design under heteroscedasticity in Linear Discriminant Analysis. Expert Systems with Applications, 79, 44-52, 2017.
  • 48. Gyamfi, K. S., Brusey, J., Hunt, A., Gaura, E., Linear classifier design under heteroscedasticity in Linear Discriminant Analysis. Expert Systems with Applications, 79, 44-52, 2017.
  • 49. Internet: Database for Mastology Research, http://visual.ic.uff.br/dmi/.
  • 49. Internet: Database for Mastology Research, http://visual.ic.uff.br/dmi/.

Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images

Year 2021, Volume: 16 Issue: 1, 65 - 84, 15.03.2021

Abstract

One of the most widespread cancer types is breast cancer all over the world. It affects both women and men. Detection of cancer in early-stage is very critical in terms of treatment success. Many studies have been done in image processing, for the detection of cancer using computer-aided diagnosis systems. In this study, the performance of various classification algorithms in cancer detection was analyzed on a thermal image dataset. For this purpose, a graphical user interface based system was developed using MATLAB. The developed system uses five different algorithms; Decision Tree, Support Vector Machine (SVM), Logistic Regression Analysis, K Nearest Neighborhood (KNN), Linear Discriminant Analysis. According to the obtained results, KNN and SVM provide the best performance. The developed system can be used as an assistant system to produce an objective result for the expert in breast cancer diagnosis with the %98.8 success rate.

References

  • 1. Huang, Q., Huang, X., Liu, L., Lin, Y., Long, X., & Li, X. (2018). A case-oriented web-based training system for breast cancer diagnosis. Computer Methods and Programs in Biomedicine, 156, 73–83. http://doi.org/10.1016/j.cmpb.2017.12.028.
  • 1. Huang, Q., Huang, X., Liu, L., Lin, Y., Long, X., & Li, X. (2018). A case-oriented web-based training system for breast cancer diagnosis. Computer Methods and Programs in Biomedicine, 156, 73–83. http://doi.org/10.1016/j.cmpb.2017.12.028.
  • 2. Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep Convolutional Neural Networks for breast cancer screening. Computer Methods and Programs in Biomedicine, 157, 19–30. http://doi.org/10.1016/j.cmpb.2018.01.011.
  • 2. Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep Convolutional Neural Networks for breast cancer screening. Computer Methods and Programs in Biomedicine, 157, 19–30. http://doi.org/10.1016/j.cmpb.2018.01.011.
  • 3. Dhahbi, S., Barhoumi, W., Kurek, J., Swiderski, B., Kruk, M., & Zagrouba, E. (2018). False-positive reduction in computer-aided mass detection using mammographic texture analysis and classification. Computer Methods and Programs in Biomedicine, 160, 75–83. http://doi.org/10.1016/j.cmpb.2018.03.026.
  • 3. Dhahbi, S., Barhoumi, W., Kurek, J., Swiderski, B., Kruk, M., & Zagrouba, E. (2018). False-positive reduction in computer-aided mass detection using mammographic texture analysis and classification. Computer Methods and Programs in Biomedicine, 160, 75–83. http://doi.org/10.1016/j.cmpb.2018.03.026.
  • 4. Rezk, E., Awan, Z., Islam, F., Jaoua, A., Al Maadeed, S., Zhang, N., Rajpoot, N. (2017). Conceptual data sampling for breast cancer histology image classification. Computers in Biology and Medicine, 89(July), 59–67. http://doi.org/10.1016/j.compbiomed.2017.07.018.
  • 4. Rezk, E., Awan, Z., Islam, F., Jaoua, A., Al Maadeed, S., Zhang, N., Rajpoot, N. (2017). Conceptual data sampling for breast cancer histology image classification. Computers in Biology and Medicine, 89(July), 59–67. http://doi.org/10.1016/j.compbiomed.2017.07.018.
  • 5. Aswathy, M. A., & Jagannath, M. (2016). Detection of breast cancer on digital histopathology images: Present status and future possibilities. Informatics in Medicine Unlocked, 8(October 2016), 74–79. http://doi.org/10.1016/j.imu.2016.11.001.
  • 5. Aswathy, M. A., & Jagannath, M. (2016). Detection of breast cancer on digital histopathology images: Present status and future possibilities. Informatics in Medicine Unlocked, 8(October 2016), 74–79. http://doi.org/10.1016/j.imu.2016.11.001.
  • 6. Khalilabad, N. D., Hassanpour, H., & Abbaszadegan, M. R. (2016). Fully automatic classification of breast cancer microarray images. Journal of Electrical Systems and Information Technology, 3(2), 348–359. http://doi.org/10.1016/j.jesit.2016.06.001.
  • 6. Khalilabad, N. D., Hassanpour, H., & Abbaszadegan, M. R. (2016). Fully automatic classification of breast cancer microarray images. Journal of Electrical Systems and Information Technology, 3(2), 348–359. http://doi.org/10.1016/j.jesit.2016.06.001.
  • 7. Saha, M., Chakraborty, C., & Racoceanu, D. (2018). Efficient deep learning model for mitosis detection using breast histopathology images. Computerized Medical Imaging and Graphics, 64(June 2017), 29–40. http://doi.org/10.1016/j.compmedimag.2017.12.001.
  • 7. Saha, M., Chakraborty, C., & Racoceanu, D. (2018). Efficient deep learning model for mitosis detection using breast histopathology images. Computerized Medical Imaging and Graphics, 64(June 2017), 29–40. http://doi.org/10.1016/j.compmedimag.2017.12.001.
  • 8. Robertson, S., Azizpour, H., Smith, K., & Hartman, J. (2018). Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Translational Research, 194, 19–35. http://doi.org/10.1016/j.trsl.2017.10.010.
  • 8. Robertson, S., Azizpour, H., Smith, K., & Hartman, J. (2018). Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Translational Research, 194, 19–35. http://doi.org/10.1016/j.trsl.2017.10.010.
  • 9. Wang, P., Hu, X., Li, Y., Liu, Q., & Zhu, X. (2016). Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Signal Processing, 122, 1–13. http://doi.org/10.1016/j.sigpro.2015.11.011.
  • 9. Wang, P., Hu, X., Li, Y., Liu, Q., & Zhu, X. (2016). Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Signal Processing, 122, 1–13. http://doi.org/10.1016/j.sigpro.2015.11.011.
  • 10. Peng, L., Chen, W., Zhou, W., Li, F., Yang, J., & Zhang, J. (2016). An immune-inspired semi-supervised algorithm for breast cancer diagnosis. Computer Methods and Programs in Biomedicine, 134(61472092), 259–265. http://doi.org/10.1016/j.cmpb.2016.07.020.
  • 10. Peng, L., Chen, W., Zhou, W., Li, F., Yang, J., & Zhang, J. (2016). An immune-inspired semi-supervised algorithm for breast cancer diagnosis. Computer Methods and Programs in Biomedicine, 134(61472092), 259–265. http://doi.org/10.1016/j.cmpb.2016.07.020.
  • 11. Berbar, M. A. (2018). Hybrid methods for feature extraction for breast masses classification. Egyptian Informatics Journal, 19(1), 63–73. http://doi.org/10.1016/j.eij.2017.08.001.
  • 11. Berbar, M. A. (2018). Hybrid methods for feature extraction for breast masses classification. Egyptian Informatics Journal, 19(1), 63–73. http://doi.org/10.1016/j.eij.2017.08.001.
  • 12. Carvalho, E. D., de Carvalho Filho, A. O., de Sousa, A. D., Silva, A. C., & Gattass, M. (2018). Method of differentiation of benign and malignant masses in digital mammograms using texture analysis based on phylogenetic diversity. Computers & Electrical Engineering, 67(November 2017), 210–222. http://doi.org/10.1016/j.compeleceng.2018.03.038.
  • 12. Carvalho, E. D., de Carvalho Filho, A. O., de Sousa, A. D., Silva, A. C., & Gattass, M. (2018). Method of differentiation of benign and malignant masses in digital mammograms using texture analysis based on phylogenetic diversity. Computers & Electrical Engineering, 67(November 2017), 210–222. http://doi.org/10.1016/j.compeleceng.2018.03.038.
  • 13. Cherif, W. (2018). Optimization of K-NN algorithm by clustering and reliability coefficients: application to breast cancer diagnosis. Procedia Computer Science, 127, 293–299. http://doi.org/10.1016/j.procs.2018.01.125.
  • 13. Cherif, W. (2018). Optimization of K-NN algorithm by clustering and reliability coefficients: application to breast cancer diagnosis. Procedia Computer Science, 127, 293–299. http://doi.org/10.1016/j.procs.2018.01.125.
  • 14. Li, Y., Chen, H., Rohde, G. K., Yao, C., & Cheng, L. (2015). Texton analysis for mass classification in mammograms. Pattern Recognition Letters, 52, 87–93. http://doi.org/10.1016/j.patrec.2014.10.008.
  • 14. Li, Y., Chen, H., Rohde, G. K., Yao, C., & Cheng, L. (2015). Texton analysis for mass classification in mammograms. Pattern Recognition Letters, 52, 87–93. http://doi.org/10.1016/j.patrec.2014.10.008.
  • 15. Sun, W., Tseng, T. L. B., Zhang, J., & Qian, W. (2017). Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Computerized Medical Imaging and Graphics, 57, 4–9. http://doi.org/10.1016/j.compmedimag.2016.07.004.
  • 15. Sun, W., Tseng, T. L. B., Zhang, J., & Qian, W. (2017). Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Computerized Medical Imaging and Graphics, 57, 4–9. http://doi.org/10.1016/j.compmedimag.2016.07.004.
  • 16. Yassin, N. I. R., Omran, S., El Houby, E. M. F., & Allam, H. (2018). Machine learning techniques for breast cancer computer-aided diagnosis using different image modalities: A systematic review. Computer Methods and Programs in Biomedicine, 156, 25–45. http://doi.org/10.1016/j.cmpb.2017.12.012.
  • 16. Yassin, N. I. R., Omran, S., El Houby, E. M. F., & Allam, H. (2018). Machine learning techniques for breast cancer computer-aided diagnosis using different image modalities: A systematic review. Computer Methods and Programs in Biomedicine, 156, 25–45. http://doi.org/10.1016/j.cmpb.2017.12.012.
  • 17. Majid, A., Ali, S., Iqbal, M., & Kausar, N. (2014). Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Computer Methods and Programs in Biomedicine, 113(3), 792–808. http://doi.org/10.1016/j.cmpb.2014.01.001.
  • 17. Majid, A., Ali, S., Iqbal, M., & Kausar, N. (2014). Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Computer Methods and Programs in Biomedicine, 113(3), 792–808. http://doi.org/10.1016/j.cmpb.2014.01.001.
  • 18. Sayed, A. M., Zaghloul, E., & Nassef, T. M. (2016). Automatic Classification of Breast Tumors Using Features Extracted from Magnetic Resonance Images. Procedia Computer Science, 95, 392–398. http://doi.org/10.1016/j.procs.2016.09.350.
  • 18. Sayed, A. M., Zaghloul, E., & Nassef, T. M. (2016). Automatic Classification of Breast Tumors Using Features Extracted from Magnetic Resonance Images. Procedia Computer Science, 95, 392–398. http://doi.org/10.1016/j.procs.2016.09.350.
  • 19. De Sampaio, W. B., Silva, A. C., De Paiva, A. C., & Gattass, M. (2015). Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, LBP and SVM. Expert Systems with Applications, 42(22), 8911–8928. http://doi.org/10.1016/j.eswa.2015.07.046.
  • 19. De Sampaio, W. B., Silva, A. C., De Paiva, A. C., & Gattass, M. (2015). Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, LBP and SVM. Expert Systems with Applications, 42(22), 8911–8928. http://doi.org/10.1016/j.eswa.2015.07.046.
  • 20. Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). Optimal breast cancer classification using Gauss–Newton representation based algorithm. Expert Systems with Applications, 85, 134–145. http://doi.org/10.1016/j.eswa.2017.05.035.
  • 20. Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). Optimal breast cancer classification using Gauss–Newton representation based algorithm. Expert Systems with Applications, 85, 134–145. http://doi.org/10.1016/j.eswa.2017.05.035.
  • 21. Pak, F., Kanan, H. R., & Alikhassi, A. (2015). Breast cancer detection and classification in digital mammography based on Non-Subsampled Contourlet Transform (NSCT) and Super Resolution. Computer Methods and Programs in Biomedicine, 122(2), 89–107. http://doi.org/10.1016/j.cmpb.2015.06.009.
  • 21. Pak, F., Kanan, H. R., & Alikhassi, A. (2015). Breast cancer detection and classification in digital mammography based on Non-Subsampled Contourlet Transform (NSCT) and Super Resolution. Computer Methods and Programs in Biomedicine, 122(2), 89–107. http://doi.org/10.1016/j.cmpb.2015.06.009.
  • 22. Dehghan Khalilabad, N., & Hassanpour, H. (2017). Employing image processing techniques for cancer detection using microarray images. Computers in Biology and Medicine, 81(December 2016), 139–147. http://doi.org/10.1016/j.compbiomed.2016.12.012.
  • 22. Dehghan Khalilabad, N., & Hassanpour, H. (2017). Employing image processing techniques for cancer detection using microarray images. Computers in Biology and Medicine, 81(December 2016), 139–147. http://doi.org/10.1016/j.compbiomed.2016.12.012.
  • 23. Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299–317. http://doi.org/10.1016/j.patcog.2009.05.012.
  • 23. Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299–317. http://doi.org/10.1016/j.patcog.2009.05.012.
  • 24. Bhardwaj, A., & Tiwari, A. (2015). Breast cancer diagnosis using Genetically Optimized Neural Network model. Expert Systems with Applications, 42(10), 4611–4620. http://doi.org/10.1016/j.eswa.2015.01.065.
  • 24. Bhardwaj, A., & Tiwari, A. (2015). Breast cancer diagnosis using Genetically Optimized Neural Network model. Expert Systems with Applications, 42(10), 4611–4620. http://doi.org/10.1016/j.eswa.2015.01.065.
  • 25. Kandlikar, S. G., Perez-Raya, I., Raghupathi, P. A., Gonzalez-Hernandez, J. L., Dabydeen, D., Medeiros, L., & Phatak, P. (2017). Infrared imaging technology for breast cancer detection – Current status, protocols and new directions. International Journal of Heat and Mass Transfer, 108, 2303–2320. http://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086.
  • 25. Kandlikar, S. G., Perez-Raya, I., Raghupathi, P. A., Gonzalez-Hernandez, J. L., Dabydeen, D., Medeiros, L., & Phatak, P. (2017). Infrared imaging technology for breast cancer detection – Current status, protocols and new directions. International Journal of Heat and Mass Transfer, 108, 2303–2320. http://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086.
  • 26. Nilashi, M., Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017). A knowledge-based system for breast cancer classification using fuzzy logic method. Telematics and Informatics, 34(4), 133–144. http://doi.org/10.1016/j.tele.2017.01.007.
  • 26. Nilashi, M., Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017). A knowledge-based system for breast cancer classification using fuzzy logic method. Telematics and Informatics, 34(4), 133–144. http://doi.org/10.1016/j.tele.2017.01.007.
  • 27. Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound in Medicine and Biology, 44(1), 37–70. http://doi.org/10.1016/j.ultrasmedbio.2017.09.012.
  • 27. Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound in Medicine and Biology, 44(1), 37–70. http://doi.org/10.1016/j.ultrasmedbio.2017.09.012.
  • 28. Rastghalam, R., & Pourghassem, H. (2016). Breast cancer detection using MRF-based probable texture feature and decision-level fusion-based classification using HMM on thermography images. Pattern Recognition, 51, 176–186. http://doi.org/10.1016/j.patcog.2015.09.009.
  • 28. Rastghalam, R., & Pourghassem, H. (2016). Breast cancer detection using MRF-based probable texture feature and decision-level fusion-based classification using HMM on thermography images. Pattern Recognition, 51, 176–186. http://doi.org/10.1016/j.patcog.2015.09.009.
  • 29. Karabadji, N. E. I., Seridi, H., Bousetouane, F., Dhifli, W., & Aridhi, S. (2017). An evolutionary scheme for decision tree construction. Knowledge-Based Systems, 119, 166–177. http://doi.org/10.1016/j.knosys.2016.12.011.
  • 29. Karabadji, N. E. I., Seridi, H., Bousetouane, F., Dhifli, W., & Aridhi, S. (2017). An evolutionary scheme for decision tree construction. Knowledge-Based Systems, 119, 166–177. http://doi.org/10.1016/j.knosys.2016.12.011.
  • 30. Wang, H., Zheng, B., Yoon, S. W., & Ko, H. S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2), 687–699. http://doi.org/10.1016/j.ejor.2017.12.001.
  • 30. Wang, H., Zheng, B., Yoon, S. W., & Ko, H. S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2), 687–699. http://doi.org/10.1016/j.ejor.2017.12.001.
  • 31. Kaymak, S., Helwan, A., & Uzun, D. (2017). Breast cancer image classification using artificial neural networks. Procedia Computer Science, 120, 126–131. http://doi.org/10.1016/j.procs.2017.11.219.
  • 31. Kaymak, S., Helwan, A., & Uzun, D. (2017). Breast cancer image classification using artificial neural networks. Procedia Computer Science, 120, 126–131. http://doi.org/10.1016/j.procs.2017.11.219.
  • 32. Mohammed, M. A., Al-Khateeb, B., Rashid, A. N., Ibrahim, D. A., Abd Ghani, M. K., & Mostafa, S. A. (2018). Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Computers and Electrical Engineering, 0, 1–12. http://doi.org/10.1016/j.compeleceng.2018.01.033.
  • 32. Mohammed, M. A., Al-Khateeb, B., Rashid, A. N., Ibrahim, D. A., Abd Ghani, M. K., & Mostafa, S. A. (2018). Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Computers and Electrical Engineering, 0, 1–12. http://doi.org/10.1016/j.compeleceng.2018.01.033.
  • 33. Karabatak, M. (2015). A new classifier for breast cancer detection based on Naïve Bayesian. Measurement: Journal of the International Measurement Confederation, 72, 32–36. http://doi.org/10.1016/j.measurement.2015.04.028.
  • 33. Karabatak, M. (2015). A new classifier for breast cancer detection based on Naïve Bayesian. Measurement: Journal of the International Measurement Confederation, 72, 32–36. http://doi.org/10.1016/j.measurement.2015.04.028.
  • 34. Lee, M. Y., & Yang, C. S. (2010). Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Computer Methods and Programs in Biomedicine, 100(3), 269–282. http://doi.org/10.1016/j.cmpb.2010.04.014.
  • 34. Lee, M. Y., & Yang, C. S. (2010). Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Computer Methods and Programs in Biomedicine, 100(3), 269–282. http://doi.org/10.1016/j.cmpb.2010.04.014.
  • 35. Francis, S. V., Sasikala, M., Bhavani Bharathi, G., & Jaipurkar, S. D. (2014). Breast cancer detection in rotational thermography images using texture features. Infrared Physics and Technology, 67, 490–496. http://doi.org/10.1016/j.infrared.2014.08.019.
  • 35. Francis, S. V., Sasikala, M., Bhavani Bharathi, G., & Jaipurkar, S. D. (2014). Breast cancer detection in rotational thermography images using texture features. Infrared Physics and Technology, 67, 490–496. http://doi.org/10.1016/j.infrared.2014.08.019.
  • 36. Etehadtavakol, M., Chandran, V., Ng, E. Y. K., & Kafieh, R. (2013). Breast cancer detection from thermal images using bispectral invariant features. International Journal of Thermal Sciences, 69, 21–36. http://doi.org/10.1016/j.ijthermalsci.2013.03.001.
  • 36. Etehadtavakol, M., Chandran, V., Ng, E. Y. K., & Kafieh, R. (2013). Breast cancer detection from thermal images using bispectral invariant features. International Journal of Thermal Sciences, 69, 21–36. http://doi.org/10.1016/j.ijthermalsci.2013.03.001.
  • 37. Abdel-Nasser, M., Saleh, A., Moreno, A., & Puig, D. (2016). Automatic nipple detection in breast thermograms. Expert Systems with Applications, 64, 365–374. http://doi.org/10.1016/j.eswa.2016.08.026.
  • 37. Abdel-Nasser, M., Saleh, A., Moreno, A., & Puig, D. (2016). Automatic nipple detection in breast thermograms. Expert Systems with Applications, 64, 365–374. http://doi.org/10.1016/j.eswa.2016.08.026.
  • 38. Li, J. B., Wang, Y. H., & Tang, L. L. (2012). Mammogram-based discriminant fusion analysis for breast cancer diagnosis. Clinical Imaging, 36(6), 710–716. https://doi.org/10.1016/j.clinimag.2012.01.041.
  • 38. Li, J. B., Wang, Y. H., & Tang, L. L. (2012). Mammogram-based discriminant fusion analysis for breast cancer diagnosis. Clinical Imaging, 36(6), 710–716. https://doi.org/10.1016/j.clinimag.2012.01.041.
  • 39. Li, J. B., Peng, Y., & Liu, D. (2013). Quasiconformal kernel common locality discriminant analysis with application to breast cancer diagnosis. Information Sciences, 223, 256–269. https://doi.org/10.1016/j.ins.2012.10.016.
  • 39. Li, J. B., Peng, Y., & Liu, D. (2013). Quasiconformal kernel common locality discriminant analysis with application to breast cancer diagnosis. Information Sciences, 223, 256–269. https://doi.org/10.1016/j.ins.2012.10.016.
  • 40. Shi, Y., Dai, D., Liu, C., & Yan, H. (2009). Sparse discriminant analysis for breast cancer biomarker identification and classification. Progress in Natural Science, 19(11), 1635–1641. https://doi.org/10.1016/j.pnsc.2009.04.013.
  • 40. Shi, Y., Dai, D., Liu, C., & Yan, H. (2009). Sparse discriminant analysis for breast cancer biomarker identification and classification. Progress in Natural Science, 19(11), 1635–1641. https://doi.org/10.1016/j.pnsc.2009.04.013.
  • 41. Elyasi, I., Pourmina, M. A., & Moin, M. S. (2016). Speckle reduction in breast cancer ultrasound images by using homogeneity modified bayes shrink. Measurement: Journal of the International Measurement Confederation, 91, 55–65. https://doi.org/10.1016/j.measurement.2016.05.025.
  • 41. Elyasi, I., Pourmina, M. A., & Moin, M. S. (2016). Speckle reduction in breast cancer ultrasound images by using homogeneity modified bayes shrink. Measurement: Journal of the International Measurement Confederation, 91, 55–65. https://doi.org/10.1016/j.measurement.2016.05.025.
  • 42. Amin, K. M., Shahin, A. I., & Guo, Y. (2016). A novel breast tumor classification algorithm using neutrosophic score features. Measurement: Journal of the International Measurement Confederation, 81, 210–220. https://doi.org/10.1016/j.measurement.2015.12.013.
  • 42. Amin, K. M., Shahin, A. I., & Guo, Y. (2016). A novel breast tumor classification algorithm using neutrosophic score features. Measurement: Journal of the International Measurement Confederation, 81, 210–220. https://doi.org/10.1016/j.measurement.2015.12.013.
  • 43. Singh, B. K., Verma, K., Thoke, A. S., & Suri, J. S. (2017). Risk stratification of 2D ultrasound-based breast lesions using hybrid feature selection in machine learning paradigm. Measurement: Journal of the International Measurement Confederation, 105, 146–157. https://doi.org/10.1016/j.measurement.2017.01.016.
  • 43. Singh, B. K., Verma, K., Thoke, A. S., & Suri, J. S. (2017). Risk stratification of 2D ultrasound-based breast lesions using hybrid feature selection in machine learning paradigm. Measurement: Journal of the International Measurement Confederation, 105, 146–157. https://doi.org/10.1016/j.measurement.2017.01.016.
  • 44. Fenster, A., Surry, K., Smith, W., & Downey, D. B. (2004). The use of three-dimensional ultrasound imaging in breast biopsy and prostate therapy. Measurement: Journal of the International Measurement Confederation, 36(3–4), 245–256. https://doi.org/10.1016/j.measurement.2004.09.013.
  • 44. Fenster, A., Surry, K., Smith, W., & Downey, D. B. (2004). The use of three-dimensional ultrasound imaging in breast biopsy and prostate therapy. Measurement: Journal of the International Measurement Confederation, 36(3–4), 245–256. https://doi.org/10.1016/j.measurement.2004.09.013.
  • 45. Masamha, T., Mnkandla, E., Jaison, A. (2017, September). Logistic regression analysis of information communication technology projects’ critical success factors: A focus on computer networking projects. InAFRICON, IEEE, pp. 963-967, 2017.
  • 45. Masamha, T., Mnkandla, E., Jaison, A. (2017, September). Logistic regression analysis of information communication technology projects’ critical success factors: A focus on computer networking projects. InAFRICON, IEEE, pp. 963-967, 2017.
  • 46. Hai, Y., Wong, S. Y., Yuen, K. Y., Cheng, V. C., Tsui, K. L. (2011, July). Logistic regression analysis for Predicting Methicillin-resistant Staphylococcus Aureus (MRSA) in-hospital mortality. In Intelligence and Security Informatics (ISI), 2011 IEEE International Conference, pp. 349-353, 2011.
  • 46. Hai, Y., Wong, S. Y., Yuen, K. Y., Cheng, V. C., Tsui, K. L. (2011, July). Logistic regression analysis for Predicting Methicillin-resistant Staphylococcus Aureus (MRSA) in-hospital mortality. In Intelligence and Security Informatics (ISI), 2011 IEEE International Conference, pp. 349-353, 2011.
  • 47. Li, M., Yuan, B., 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 26(5), 527-532, 2005.
  • 47. Li, M., Yuan, B., 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 26(5), 527-532, 2005.
  • 48. Gyamfi, K. S., Brusey, J., Hunt, A., Gaura, E., Linear classifier design under heteroscedasticity in Linear Discriminant Analysis. Expert Systems with Applications, 79, 44-52, 2017.
  • 48. Gyamfi, K. S., Brusey, J., Hunt, A., Gaura, E., Linear classifier design under heteroscedasticity in Linear Discriminant Analysis. Expert Systems with Applications, 79, 44-52, 2017.
  • 49. Internet: Database for Mastology Research, http://visual.ic.uff.br/dmi/.
  • 49. Internet: Database for Mastology Research, http://visual.ic.uff.br/dmi/.
There are 98 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Muhammet Baykara 0000-0001-5223-1343

Publication Date March 15, 2021
Submission Date January 3, 2021
Published in Issue Year 2021 Volume: 16 Issue: 1

Cite

APA Baykara, M. (2021). Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images. Turkish Journal of Science and Technology, 16(1), 65-84.
AMA Baykara M. Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images. TJST. March 2021;16(1):65-84.
Chicago Baykara, Muhammet. “Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images”. Turkish Journal of Science and Technology 16, no. 1 (March 2021): 65-84.
EndNote Baykara M (March 1, 2021) Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images. Turkish Journal of Science and Technology 16 1 65–84.
IEEE M. Baykara, “Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images”, TJST, vol. 16, no. 1, pp. 65–84, 2021.
ISNAD Baykara, Muhammet. “Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images”. Turkish Journal of Science and Technology 16/1 (March 2021), 65-84.
JAMA Baykara M. Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images. TJST. 2021;16:65–84.
MLA Baykara, Muhammet. “Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images”. Turkish Journal of Science and Technology, vol. 16, no. 1, 2021, pp. 65-84.
Vancouver Baykara M. Performance Analysis of Various Classification Algorithms for Computer-Aided Breast Cancer Diagnosis System Using Thermal Medical Images. TJST. 2021;16(1):65-84.