Research Article
BibTex RIS Cite

CR-39 ve Trivex Optik Lenslerinin Foton Maruz Kalma ve Enerji Soğurma Buildup Faktörlerinin Karşılaştırılması

Year 2022, Volume: 17 Issue: 1, 23 - 35, 20.03.2022
https://doi.org/10.55525/tjst.1003130

Abstract

Bu çalışmada CR-39 ve Trivex optik lenslerinin enerji absorpsiyon buildup faktörü (EABF) ve maruz kalma buildup faktörleri (EBF), geometrik ilerleme (GP) uydurma yöntemi kullanılarak ve ANSI/ANS-6.4.3 veri tabanı dikkate alınarak hesaplanmıştır. Çalışma 0.015 ila 15 MeV enerji aralığında ve 40 mfp'ye kadar farklı penetrasyon derinliği için kapsamlı bir şekilde analiz edilmiştir. İncelenen materyallerde hesaplanılan her iki buildup faktörünün gelen fotonun enerjisine, penetrasyon derinliklerine ve materyalin kimyasal bileşimine bağımlılık gösterdiği ve tutarsız saçılma etkileşim olasılıklarının baskın olduğu enerji bölgesinde maksimum değerlerine ulaştığı bulundu. Sonuçlar, CR-39 optik lensinin daha iyi radyasyon koruma performansına sahip olduğunu gösterdi. Sonuçların uygunluğu radyasyon koruyucu parametrelerin hesaplanmasında literatürde sıklıkla tercih edilen EPICS2017 ve Phy-X/PSD güçlü yazılım araçları ile karşılaştırıldı. EPICS2017 ve Phy-X/PSD yazılımları ile bu çalışmadan elde edilen sonuçlar arasında nispi değişikliklerin CR-39 ve Trivex Optik lensi için sırasıyla %8, %9 olduğu bulundu. Bu, çalışmadan elde edilen sonuçların iyi bir uyum gösterdiğini belirtmektedir.

References

  • [1] Musikant S. Optical Materials, New York, Marcel Dekker, Inc, 1985.
  • [2] Şen F, Durdu B.G, Oduncuoğlu M, Efil K, Dinçer M, A Theoretical Investigation by DFT Method on CR – 39 Monomer that is a Plastic Polymer Commonly Used in the Manufacture of Eyeglass Lenses, Am. J. Opt. Photonics 2014; 2: 7–11.
  • [3] Alonso J, Gómez-Pedrero J.A, Quiroga J.A. Modern ophthalmic optics, New York, Cambridge University, 2019.
  • [4] Ralph Chou B, Dain S.J, Cheng B.B, Effect of ultraviolet exposure on impact resistance of ophthalmic lenses, Optom. Vis. Sci 2015; 92: 1154–1160.
  • [5] Organisation WH. Coronavirus disease 2019 (COVID-19) situation report 32, 2020 (Available:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200221-sitrep-32-covid-19.pdf/ 2020).
  • [6] Chandrinos A, Tzamouranis D.-D. The Pandemic of COVID-19 and the Use of Contact Lenses, Asian J. Res. Reports Ophthalmol 2020; 3: 24–30.
  • [7] Zeng W, Wang X, Li J, Yang Y, Qiu X, Song P, Xu J, Wei Y. Association of dailywear of eyeglasses with susceptibility to coronavirus disease 2019 infection, JAMA Ophthalmol 2020; 138: 1196–1199.
  • [8] Manohara S.R, Hanagodimath S.M, Gerward L. Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence, Radiat. Phys. Chem 2010; 79: 575–582.
  • [9] Sayyed M.I, AlZaatreh M.Y, Matori K.A, Sidek H.A.A, Zaid M.H.M. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries, Results Phys 2018; 9: 585–592.
  • [10] Kurudirek M, Sardari D, Khaledi N, Çakir C, Mann K.S. Investigation of X- and gamma ray photons buildup in some neutron shielding materials using GP fitting approximation, Ann. Nucl. Energy 2013; 53: 485–491.
  • [11] ANSI/ANS-6.4.3. Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society La Grange Park, IL 1991.
  • [12] Şakar E. Determination of photon-shielding features and build-up factors of nickel–silver alloys, Radiat. Phys. Chem 2020; 172:108778.
  • [13] Hila F.C, Asuncion-astronomo A, Anne C, Dingle M, Federico J, Jecong M, Javier-hila A.M.V, Bryan M, Gili Z et al. EpiXS : A Windows-based program for photon attenuation , dosimetry and shielding based on EPICS2017 ( ENDF / B-VIII ) and EPDL97 ( ENDF / B-VI.8). Radiat. Phys. Chem 2021; 182:109331.
  • [14] Şakar E, Özpolat Ö.F, Alım B, Sayyed M.I, Kurudirek M. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem 2020; 166: 108496.
  • [15] Chou B.R, Hovis J.K. Effect of multiple antireflection coatings on impact resistance of Hoya Phoenix spectacle lenses, Clin. Exp. Optom 2006; 89: 86–89.
  • [16] Bhootra A.K. Ophthalmic Lenses, India, Jaypee Brothers Medical Publishers (P) Ltd, 2009.
  • [17] Fernando J, Domínguez R, Resistencia a los impactos : una mirada óptica, Cien. Tecnol. Salud. Vis. Ocul 2013; 11: 113–125.
  • [18] Gerward L, Guilbert N, Jensen K.B, Levring H. WinXCom - A program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem 2004; 71: 653–654.
  • [19] Berger M.J, Hubbell J.H, Seltzer S.M, Chang J, Coursey J.S, Sukumar R, Zucker D.S, Olsen K. XCOM: Photon Cross Sections Database, NIST Standard Reference Database, NIST Stand. Ref. Database. 8 XGA 2010.
  • [20] Hila F.C, Amorsolo A. V, Javier-Hila A.M. V, Guillermo N.R.D. A simple spreadsheet program for calculating mass attenuation coefficients and shielding parameters based on EPICS2017 and EPDL97 photoatomic libraries, Radiat. Phys. Chem 2020; 177:109122.
  • [21] Oyeleke Olarinoye I. Photon Buildup Factors For Some Tissues and Phantom Materials For Penetration Depths Up To 100 Mfp, J. Nucl. Res. Dev 2017; 13.
  • [22] Kerur B.R. Thontadarya S.R, Hanumaiah B. A novel method for the determination of x-ray mass attenuation coefficients, Int. J. Radiat. Appl. Instrumentation. Part 1991; 42: 571–575.
  • [23] Heath DR. Optics and vision, Telecommunications Engineer's Reference Book, Elsevier, 1993.
  • [24] Gilmore G. Practical gamma-ray spectrometry, England, WILEY, 2008.
  • [25] Bass M. Handbook of Optics Volume III: Classical Optics, Vision Optics,X-ray Optics. 2nd ed. United States of America: McGraw-Hill, inc 2010.
  • [26] Yonphan S, Limkitjaroenporn P, Borisut P, Kothan S, Wongdamnern N, Alhuthali A.M.S, Sayyed M.I, Kaewkhao J. The photon interactions and build-up factor for gadolinium sodium borate glass: Theoretical and experimental approaches, Radiat. Phys. Chem 2021; 188.
  • [27] Sayyed M.I, Elmahroug Y, Elbashir B.O, Issa S.A.M, Gamma-ray shielding properties of zinc oxide soda lime silica glasses, J. Mater. Sci. Mater. Electron 2017; 28: 4064–4074.
  • [28] Stalin S, Gaikwad D.K, Al-Buriahi M.S, Srinivasu C, Ahmed S.A, Tekin H.O, Rahman S. Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses, Ceram. Int 2021; 47: 5286–5299.
  • [29] Harima Y. Approximation of Gamma-Ray Buildup Factors By Modified Geometrical Progression., Nucl. Sci. Eng 1983; 83: 299–309.
  • [30] Alsaif N.A.M, Elmahroug Y, Alotaibi B.M, Alyousef H.A, Rekik N, Hussein A.W.M.A, Chand R, Farooq U. Calculating photon buildup factors in determining the γ-ray shielding effectiveness of some materials susceptible to be used for the conception of neutrons and γ-ray shielding, J. Mater. Res. Technol 2021; 11: 769–784.
  • [31] Kadri O, Alfuraih A. Photon energy absorption and exposure buildup factors for deep penetration in human tissues, Nucl. Sci. Tech 2019; . 30: 1–9.
  • [32] Harima Y, Sakamoto Y, Tanaka S, Kawai M. Validity of the Geometric-Progression Formula in Approximating Gamma-Ray Buildup Factors., Nucl. Sci. Eng 1986; 94:24–35.
  • [33] Harima Y, Tanaka S.I, Sakamoto Y, Hirayama H. Development of new gamma-ray buildup factor and application to shielding calculations, J. Nucl. Sci. Technol 1991; 28:74–84. [34] Jarrah I, Radaideh M.I, Kozlowski T, Rizwan-uddin. Determination and validation of photon energy absorption buildup factor in human tissues using Monte Carlo simulation, Radiat. Phys. Chem 2019; 160: 15–25.
  • [35] Trkov A, Herman M, Brown D.A. ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files, ENDF/B-VI and ENDF/B-VII, CSEWG Document ENDF-102, Report BNL-90365-2009 Rev. 2, Brookhaven National Laboratory, 2009.

Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses

Year 2022, Volume: 17 Issue: 1, 23 - 35, 20.03.2022
https://doi.org/10.55525/tjst.1003130

Abstract

In the present study, Energy Absorption Buildup Factor (EABF) and Exposure Buildup Factors (EBF) of the CR-39 and Trivex optical lenses are calculated by using the Geometric Progression (GP) fitting method based on ANSI/ANS-6.4.3 database. The study analyses comprehensively for different penetration depths within the energy range of 0.015 - 15 MeV up to 40 mfp. The buildup factors are calculated in the examined materials depending on the photon energy that arrives, the penetration depths, and the chemical composition of the material reach at maximum values in the energy region where inconsistent scattering interaction probabilities are intensive. The results show that the CR-39 optical lens had better radiation shielding performance. The suitability of the results is compared with the powerful software tools (EPICS2017 and Phy-X/PSD), which are preferred frequently in the literature to calculate radiation shielding parameters. It is found that the relative changes between the EPICS2017 and Phy-X/PSD software compared with the results of this study are about 8% and 9% for the CR-39 and Trivex optical lens, respectively. This indicates that the results from the study are in good agreement.

References

  • [1] Musikant S. Optical Materials, New York, Marcel Dekker, Inc, 1985.
  • [2] Şen F, Durdu B.G, Oduncuoğlu M, Efil K, Dinçer M, A Theoretical Investigation by DFT Method on CR – 39 Monomer that is a Plastic Polymer Commonly Used in the Manufacture of Eyeglass Lenses, Am. J. Opt. Photonics 2014; 2: 7–11.
  • [3] Alonso J, Gómez-Pedrero J.A, Quiroga J.A. Modern ophthalmic optics, New York, Cambridge University, 2019.
  • [4] Ralph Chou B, Dain S.J, Cheng B.B, Effect of ultraviolet exposure on impact resistance of ophthalmic lenses, Optom. Vis. Sci 2015; 92: 1154–1160.
  • [5] Organisation WH. Coronavirus disease 2019 (COVID-19) situation report 32, 2020 (Available:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200221-sitrep-32-covid-19.pdf/ 2020).
  • [6] Chandrinos A, Tzamouranis D.-D. The Pandemic of COVID-19 and the Use of Contact Lenses, Asian J. Res. Reports Ophthalmol 2020; 3: 24–30.
  • [7] Zeng W, Wang X, Li J, Yang Y, Qiu X, Song P, Xu J, Wei Y. Association of dailywear of eyeglasses with susceptibility to coronavirus disease 2019 infection, JAMA Ophthalmol 2020; 138: 1196–1199.
  • [8] Manohara S.R, Hanagodimath S.M, Gerward L. Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence, Radiat. Phys. Chem 2010; 79: 575–582.
  • [9] Sayyed M.I, AlZaatreh M.Y, Matori K.A, Sidek H.A.A, Zaid M.H.M. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries, Results Phys 2018; 9: 585–592.
  • [10] Kurudirek M, Sardari D, Khaledi N, Çakir C, Mann K.S. Investigation of X- and gamma ray photons buildup in some neutron shielding materials using GP fitting approximation, Ann. Nucl. Energy 2013; 53: 485–491.
  • [11] ANSI/ANS-6.4.3. Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society La Grange Park, IL 1991.
  • [12] Şakar E. Determination of photon-shielding features and build-up factors of nickel–silver alloys, Radiat. Phys. Chem 2020; 172:108778.
  • [13] Hila F.C, Asuncion-astronomo A, Anne C, Dingle M, Federico J, Jecong M, Javier-hila A.M.V, Bryan M, Gili Z et al. EpiXS : A Windows-based program for photon attenuation , dosimetry and shielding based on EPICS2017 ( ENDF / B-VIII ) and EPDL97 ( ENDF / B-VI.8). Radiat. Phys. Chem 2021; 182:109331.
  • [14] Şakar E, Özpolat Ö.F, Alım B, Sayyed M.I, Kurudirek M. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem 2020; 166: 108496.
  • [15] Chou B.R, Hovis J.K. Effect of multiple antireflection coatings on impact resistance of Hoya Phoenix spectacle lenses, Clin. Exp. Optom 2006; 89: 86–89.
  • [16] Bhootra A.K. Ophthalmic Lenses, India, Jaypee Brothers Medical Publishers (P) Ltd, 2009.
  • [17] Fernando J, Domínguez R, Resistencia a los impactos : una mirada óptica, Cien. Tecnol. Salud. Vis. Ocul 2013; 11: 113–125.
  • [18] Gerward L, Guilbert N, Jensen K.B, Levring H. WinXCom - A program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem 2004; 71: 653–654.
  • [19] Berger M.J, Hubbell J.H, Seltzer S.M, Chang J, Coursey J.S, Sukumar R, Zucker D.S, Olsen K. XCOM: Photon Cross Sections Database, NIST Standard Reference Database, NIST Stand. Ref. Database. 8 XGA 2010.
  • [20] Hila F.C, Amorsolo A. V, Javier-Hila A.M. V, Guillermo N.R.D. A simple spreadsheet program for calculating mass attenuation coefficients and shielding parameters based on EPICS2017 and EPDL97 photoatomic libraries, Radiat. Phys. Chem 2020; 177:109122.
  • [21] Oyeleke Olarinoye I. Photon Buildup Factors For Some Tissues and Phantom Materials For Penetration Depths Up To 100 Mfp, J. Nucl. Res. Dev 2017; 13.
  • [22] Kerur B.R. Thontadarya S.R, Hanumaiah B. A novel method for the determination of x-ray mass attenuation coefficients, Int. J. Radiat. Appl. Instrumentation. Part 1991; 42: 571–575.
  • [23] Heath DR. Optics and vision, Telecommunications Engineer's Reference Book, Elsevier, 1993.
  • [24] Gilmore G. Practical gamma-ray spectrometry, England, WILEY, 2008.
  • [25] Bass M. Handbook of Optics Volume III: Classical Optics, Vision Optics,X-ray Optics. 2nd ed. United States of America: McGraw-Hill, inc 2010.
  • [26] Yonphan S, Limkitjaroenporn P, Borisut P, Kothan S, Wongdamnern N, Alhuthali A.M.S, Sayyed M.I, Kaewkhao J. The photon interactions and build-up factor for gadolinium sodium borate glass: Theoretical and experimental approaches, Radiat. Phys. Chem 2021; 188.
  • [27] Sayyed M.I, Elmahroug Y, Elbashir B.O, Issa S.A.M, Gamma-ray shielding properties of zinc oxide soda lime silica glasses, J. Mater. Sci. Mater. Electron 2017; 28: 4064–4074.
  • [28] Stalin S, Gaikwad D.K, Al-Buriahi M.S, Srinivasu C, Ahmed S.A, Tekin H.O, Rahman S. Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses, Ceram. Int 2021; 47: 5286–5299.
  • [29] Harima Y. Approximation of Gamma-Ray Buildup Factors By Modified Geometrical Progression., Nucl. Sci. Eng 1983; 83: 299–309.
  • [30] Alsaif N.A.M, Elmahroug Y, Alotaibi B.M, Alyousef H.A, Rekik N, Hussein A.W.M.A, Chand R, Farooq U. Calculating photon buildup factors in determining the γ-ray shielding effectiveness of some materials susceptible to be used for the conception of neutrons and γ-ray shielding, J. Mater. Res. Technol 2021; 11: 769–784.
  • [31] Kadri O, Alfuraih A. Photon energy absorption and exposure buildup factors for deep penetration in human tissues, Nucl. Sci. Tech 2019; . 30: 1–9.
  • [32] Harima Y, Sakamoto Y, Tanaka S, Kawai M. Validity of the Geometric-Progression Formula in Approximating Gamma-Ray Buildup Factors., Nucl. Sci. Eng 1986; 94:24–35.
  • [33] Harima Y, Tanaka S.I, Sakamoto Y, Hirayama H. Development of new gamma-ray buildup factor and application to shielding calculations, J. Nucl. Sci. Technol 1991; 28:74–84. [34] Jarrah I, Radaideh M.I, Kozlowski T, Rizwan-uddin. Determination and validation of photon energy absorption buildup factor in human tissues using Monte Carlo simulation, Radiat. Phys. Chem 2019; 160: 15–25.
  • [35] Trkov A, Herman M, Brown D.A. ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files, ENDF/B-VI and ENDF/B-VII, CSEWG Document ENDF-102, Report BNL-90365-2009 Rev. 2, Brookhaven National Laboratory, 2009.
There are 34 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Sevim Bilici 0000-0002-7694-5081

Ahmet Bilici 0000-0002-3192-456X

Fatih Külahcı 0000-0001-6566-4308

Publication Date March 20, 2022
Submission Date October 1, 2021
Published in Issue Year 2022 Volume: 17 Issue: 1

Cite

APA Bilici, S., Bilici, A., & Külahcı, F. (2022). Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses. Turkish Journal of Science and Technology, 17(1), 23-35. https://doi.org/10.55525/tjst.1003130
AMA Bilici S, Bilici A, Külahcı F. Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses. TJST. March 2022;17(1):23-35. doi:10.55525/tjst.1003130
Chicago Bilici, Sevim, Ahmet Bilici, and Fatih Külahcı. “Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses”. Turkish Journal of Science and Technology 17, no. 1 (March 2022): 23-35. https://doi.org/10.55525/tjst.1003130.
EndNote Bilici S, Bilici A, Külahcı F (March 1, 2022) Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses. Turkish Journal of Science and Technology 17 1 23–35.
IEEE S. Bilici, A. Bilici, and F. Külahcı, “Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses”, TJST, vol. 17, no. 1, pp. 23–35, 2022, doi: 10.55525/tjst.1003130.
ISNAD Bilici, Sevim et al. “Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses”. Turkish Journal of Science and Technology 17/1 (March 2022), 23-35. https://doi.org/10.55525/tjst.1003130.
JAMA Bilici S, Bilici A, Külahcı F. Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses. TJST. 2022;17:23–35.
MLA Bilici, Sevim et al. “Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses”. Turkish Journal of Science and Technology, vol. 17, no. 1, 2022, pp. 23-35, doi:10.55525/tjst.1003130.
Vancouver Bilici S, Bilici A, Külahcı F. Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses. TJST. 2022;17(1):23-35.