Research Article
BibTex RIS Cite
Year 2022, Volume: 17 Issue: 2, 241 - 250, 30.09.2022
https://doi.org/10.55525/tjst.1063284

Abstract

References

  • [1] Tonini, M.; D’Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105.
  • [2] Le, H. V., Hoang, D. A., Tran, C. T., Nguyen, P. Q., Tran, V. H., Hoang, N. D., Amiri, M., Ngo, T. P., Nhu, H. V., Hoang, T. V., & Tien Bui, D. A new approach of deep neural computing for spatial prediction of wildfire danger at Tropical Climate Areas. Ecological Informatics, 2021, 63
  • [3] Jain, P., Coogan, S.C., Subramanian, S.G., Crowley, M., Taylor, S., & Flannigan, M.D. A review of machine learning applications in wildfire science and management. ArXiv, 2020,abs/2003.00646.
  • [4] S. Girtsou, A. Apostolakis, G. Giannopoulos and C. Kontoes,A Machine Learning Methodology for Next Day Wildfire Prediction, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 8487-8490
  • [5] Liang Hç, Zhang M. and Wang H., "A Neural Network Model for Wildfire Scale Prediction Using Meteorological Factors," in IEEE Access, vol. 7, pp. 176746-176755, 2019
  • [6] Gholamnia, K.; Gudiyangada Nachappa, T.; Ghorbanzadeh, O.; Blaschke, T. Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping. Symmetry 2020, 12, 604.
  • [7] Jonathan K., “Gradient boosting with extreme-value theory for wildfire prediction,” arXiv, 2021.
  • [8] V. Zope, T. Dadlani, A. Matai, P. Tembhurnikar and R. Kalani, "IoT Sensor and Deep Neural Network based Wildfire Prediction System," 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 2020, pp. 205-208
  • [9] Pérez-Porras, F.-J.; Triviño-Tarradas, P.; Cima-Rodríguez, C.; Meroño-de-Larriva, J.-E.; García-Ferrer, A.; Mesas-Carrascosa, F.-J. Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires. Sensors 2021, 21, 3694.
  • [10] Valero, M. M., Jofre, L., & Torres, R. Multifidelity prediction in wildfire spread simulation: Modeling, uncertainty quantification and sensitivity analysis. Environmental Modelling & Software, 141, 2021.
  • [11] Cao Y., Yang F., Tang Q. and Lu X., An Attention Enhanced Bidirectional LSTM for Early Forest Fire Smoke Recognition. IEEE Access, vol. 7, pp. 154732-154742, 2019
  • [12] Bergado J. R, Persello C., Reinke K., Stein A. Predicting wildfire burns from big geodata using deep learning. Safety Science, 140, 2021.
  • [13] Qin L , Shao W. , Du G., Mou J. ve Bi R., Predictive Modeling of Wildfires in the United States. 2021 2nd International Conference on Computing and Data Science (CDS);2021 Stanford, pp. 562-567
  • [14] Beşli N. And Tenekeci M. Uydu verilerinden karar ağaçları kullanarak orman yangını tahmini. DÜMF Mühendislik Dergisi; 2020.
  • [15] Moore S. A. Wildfire Burn Area Prediction. 2019. 33rd Conference on Neural Information Processing Systems. Vancouver, Canada,.
  • [16] Vetter TR, Schober P. Regression: The Apple Does Not Fall Far From the Tree. Anesth Analg. 2018 Jul;127(1):277-283.
  • [17] Willsch D., Willsch M., De Raedt H. , Michielsen K., Support vector machines on the D-Wave quantum annealer. Computer Physics Communications, Volume 248, 2020, 107006, ISSN 0010-4655.
  • [18] Huang, Y., Zhao, L. Review on landslide susceptibility mapping using support vector machines. 2018. CATENA, 165, 520–529.
  • [19] Zhang, Y., Tuo, M., Yin, Q., Qi, L., Wang, X., & Liu, T. Keywords extraction with deep neural network model. Neurocomputing. 2020 383, 113-121.
  • [20] Zhang, G., Wang, M., & Liu, K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. 2019. International Journal of Disaster Risk Science, 10(3), 386-403.
  • [21] Heidari, A. A., Faris, H., Mirjalili, S., Aljarah, I., & Mafarja, M. Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. 2020 Nature-Inspired Optimizers, 23-46.
  • [22] Abu Alfeilat, H. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal Salman, H. S., & Prasath, V. S. Effects of distance measure choice on k-nearest neighbor classifier performance: a review. 2019,Big data, 7(4), 221-248.
  • [23] Ali, N., Neagu, D., & Trundle, P. Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets. 2019. SN Applied Sciences, 1(12), 1-15.
  • [24] Jaafari, A., Zenner, E. K., & Pham, B. T. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. 2018. Ecological informatics, 43, 200-211.
  • [25] Pavlyshenko, B. Using stacking approaches for machine learning models. 2018. 2018 IEEE Second International Conference on Data Stream Mining & Processing .255-258. IEEE.

Comparison of the Machine Learning Methods to Predict Wildfire Areas

Year 2022, Volume: 17 Issue: 2, 241 - 250, 30.09.2022
https://doi.org/10.55525/tjst.1063284

Abstract

In the last decades, global warming has changed the temperature. It caused an increasing the wildfire in everywhere. Wildfires affect people's social lives, animal lives, and countries' economies. Therefore, new prevention and control mechanisms are required for forest fires. Artificial intelligence and neural networks(NN) have been benefited from in the management of forest fires since the 1990s. Since that time, machine learning (ML) methods have been used in environmental science in various subjects. This study aims to present a performance comparison of ML algorithms applied to predict burned area size. In this paper, different ML algorithms were used to forecast fire size based on various characteristics such as temperature, wind, humidity and precipitation, using records of 512 wildfires that took place in a national park in Northern Portugal. These algorithms are Multilayer perceptron(MLP), Linear regression, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree and Stacking methods. All algorithms have been implemented on the WEKA environment. The results showed that the SVM method has the best predictive ability among all models according to the Mean Absolute Error (MAE) metric.

References

  • [1] Tonini, M.; D’Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105.
  • [2] Le, H. V., Hoang, D. A., Tran, C. T., Nguyen, P. Q., Tran, V. H., Hoang, N. D., Amiri, M., Ngo, T. P., Nhu, H. V., Hoang, T. V., & Tien Bui, D. A new approach of deep neural computing for spatial prediction of wildfire danger at Tropical Climate Areas. Ecological Informatics, 2021, 63
  • [3] Jain, P., Coogan, S.C., Subramanian, S.G., Crowley, M., Taylor, S., & Flannigan, M.D. A review of machine learning applications in wildfire science and management. ArXiv, 2020,abs/2003.00646.
  • [4] S. Girtsou, A. Apostolakis, G. Giannopoulos and C. Kontoes,A Machine Learning Methodology for Next Day Wildfire Prediction, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 8487-8490
  • [5] Liang Hç, Zhang M. and Wang H., "A Neural Network Model for Wildfire Scale Prediction Using Meteorological Factors," in IEEE Access, vol. 7, pp. 176746-176755, 2019
  • [6] Gholamnia, K.; Gudiyangada Nachappa, T.; Ghorbanzadeh, O.; Blaschke, T. Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping. Symmetry 2020, 12, 604.
  • [7] Jonathan K., “Gradient boosting with extreme-value theory for wildfire prediction,” arXiv, 2021.
  • [8] V. Zope, T. Dadlani, A. Matai, P. Tembhurnikar and R. Kalani, "IoT Sensor and Deep Neural Network based Wildfire Prediction System," 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 2020, pp. 205-208
  • [9] Pérez-Porras, F.-J.; Triviño-Tarradas, P.; Cima-Rodríguez, C.; Meroño-de-Larriva, J.-E.; García-Ferrer, A.; Mesas-Carrascosa, F.-J. Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires. Sensors 2021, 21, 3694.
  • [10] Valero, M. M., Jofre, L., & Torres, R. Multifidelity prediction in wildfire spread simulation: Modeling, uncertainty quantification and sensitivity analysis. Environmental Modelling & Software, 141, 2021.
  • [11] Cao Y., Yang F., Tang Q. and Lu X., An Attention Enhanced Bidirectional LSTM for Early Forest Fire Smoke Recognition. IEEE Access, vol. 7, pp. 154732-154742, 2019
  • [12] Bergado J. R, Persello C., Reinke K., Stein A. Predicting wildfire burns from big geodata using deep learning. Safety Science, 140, 2021.
  • [13] Qin L , Shao W. , Du G., Mou J. ve Bi R., Predictive Modeling of Wildfires in the United States. 2021 2nd International Conference on Computing and Data Science (CDS);2021 Stanford, pp. 562-567
  • [14] Beşli N. And Tenekeci M. Uydu verilerinden karar ağaçları kullanarak orman yangını tahmini. DÜMF Mühendislik Dergisi; 2020.
  • [15] Moore S. A. Wildfire Burn Area Prediction. 2019. 33rd Conference on Neural Information Processing Systems. Vancouver, Canada,.
  • [16] Vetter TR, Schober P. Regression: The Apple Does Not Fall Far From the Tree. Anesth Analg. 2018 Jul;127(1):277-283.
  • [17] Willsch D., Willsch M., De Raedt H. , Michielsen K., Support vector machines on the D-Wave quantum annealer. Computer Physics Communications, Volume 248, 2020, 107006, ISSN 0010-4655.
  • [18] Huang, Y., Zhao, L. Review on landslide susceptibility mapping using support vector machines. 2018. CATENA, 165, 520–529.
  • [19] Zhang, Y., Tuo, M., Yin, Q., Qi, L., Wang, X., & Liu, T. Keywords extraction with deep neural network model. Neurocomputing. 2020 383, 113-121.
  • [20] Zhang, G., Wang, M., & Liu, K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. 2019. International Journal of Disaster Risk Science, 10(3), 386-403.
  • [21] Heidari, A. A., Faris, H., Mirjalili, S., Aljarah, I., & Mafarja, M. Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. 2020 Nature-Inspired Optimizers, 23-46.
  • [22] Abu Alfeilat, H. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal Salman, H. S., & Prasath, V. S. Effects of distance measure choice on k-nearest neighbor classifier performance: a review. 2019,Big data, 7(4), 221-248.
  • [23] Ali, N., Neagu, D., & Trundle, P. Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets. 2019. SN Applied Sciences, 1(12), 1-15.
  • [24] Jaafari, A., Zenner, E. K., & Pham, B. T. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. 2018. Ecological informatics, 43, 200-211.
  • [25] Pavlyshenko, B. Using stacking approaches for machine learning models. 2018. 2018 IEEE Second International Conference on Data Stream Mining & Processing .255-258. IEEE.
There are 25 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Gözde Bayat 0000-0003-1116-1881

Kazım Yıldız 0000-0001-6999-1410

Publication Date September 30, 2022
Submission Date January 26, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

APA Bayat, G., & Yıldız, K. (2022). Comparison of the Machine Learning Methods to Predict Wildfire Areas. Turkish Journal of Science and Technology, 17(2), 241-250. https://doi.org/10.55525/tjst.1063284
AMA Bayat G, Yıldız K. Comparison of the Machine Learning Methods to Predict Wildfire Areas. TJST. September 2022;17(2):241-250. doi:10.55525/tjst.1063284
Chicago Bayat, Gözde, and Kazım Yıldız. “Comparison of the Machine Learning Methods to Predict Wildfire Areas”. Turkish Journal of Science and Technology 17, no. 2 (September 2022): 241-50. https://doi.org/10.55525/tjst.1063284.
EndNote Bayat G, Yıldız K (September 1, 2022) Comparison of the Machine Learning Methods to Predict Wildfire Areas. Turkish Journal of Science and Technology 17 2 241–250.
IEEE G. Bayat and K. Yıldız, “Comparison of the Machine Learning Methods to Predict Wildfire Areas”, TJST, vol. 17, no. 2, pp. 241–250, 2022, doi: 10.55525/tjst.1063284.
ISNAD Bayat, Gözde - Yıldız, Kazım. “Comparison of the Machine Learning Methods to Predict Wildfire Areas”. Turkish Journal of Science and Technology 17/2 (September 2022), 241-250. https://doi.org/10.55525/tjst.1063284.
JAMA Bayat G, Yıldız K. Comparison of the Machine Learning Methods to Predict Wildfire Areas. TJST. 2022;17:241–250.
MLA Bayat, Gözde and Kazım Yıldız. “Comparison of the Machine Learning Methods to Predict Wildfire Areas”. Turkish Journal of Science and Technology, vol. 17, no. 2, 2022, pp. 241-50, doi:10.55525/tjst.1063284.
Vancouver Bayat G, Yıldız K. Comparison of the Machine Learning Methods to Predict Wildfire Areas. TJST. 2022;17(2):241-50.