Research Article
BibTex RIS Cite
Year 2022, Volume: 17 Issue: 2, 309 - 319, 30.09.2022
https://doi.org/10.55525/tjst.1099063

Abstract

References

  • Referans1 Hansen N. Hall-Petch relation and boundary strengthening. Scripta Materialia 2004; 51(8): 801-806.
  • Referans12 Jang D, Cai C, Greer JR. Influence of Homogeneous Interfaces on the Strength of 500 nm Diameter Cu Nanopillars. Nano Letters 2011; 11: 1743-1746.
  • Referans3 Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper. Science 2009; 323: 607-610.
  • Referans4 Afanasyev KA, Sansoz F. Strengthening in Gold Nanopillars with Nanoscale Twins. Nano Letters 2007; 7(7): 2056-2062.
  • Referans5 Deng C, Sansoz F. Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission. Applied Physics Letters 2009; 95: 091914.
  • Referans6 Zhang JY, Zhang X, Liu G, Zhang GJ, Sun J. Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scripta Materialia 2010; 63: 101-104.
  • Referans7 Zhu XF, Li YP, Zhang GP, Tan J, Liu Y. Understanding nanoscale damage at a crack tip of multilayered metallic composites. Applied Physics Letters 2008; 92: 161905.
  • Referans8 Yan H, Choe HS, Nam S, Hu Y, Das S, Klemic JF, Ellenbogen JC, Lieber CM. Programmable nanowire circuits for nanoprocessors. Nature 2011; 470: 240–244.
  • Referans9 Mourik W, Zuo K, Frolov SM, Plissard SR, Bakkers EPAM, Kouwenhoven LP. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012; 336: 1003-1007.
  • Referans10 Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology 2011; 6(3): 147-150.
  • Referans11 Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Tuning upconversion through energy migration in core-shell nanoparticles.Nature Materials 2011;10(12): 968-973.
  • Referans12 Liu R, Duay J, Lee SB. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chemical Communications 2011; 47(5): 1384-1404.
  • Referans13 Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chemical Society Reviews 2011; 40(1): 44-56.
  • Referans14 Lim LC. Surface intergranular cracking in large strain fatigue. Acta Metallurgica 1987; 35(7): 1653-1662.
  • Referans15 Field DP, Adams BL. Interface cavitation damage in polycrystalline copper. Acta Metallurgicia et Materialia 1992; 40(6): 1145-1157.
  • Referans16 Aifantis KE, Soer WA, De Hosson JTM, Willis JR. Interfaces within strain gradient plasticity: Theory and experiments. Acta Materialia 2006; 54: 5077-5085.
  • Referans17 Swygenhoven HV, Farkas D, Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale. Physical Review B 2000; 62: 831-838.
  • Referans18 Capolungo L, Spearot DE, Cherkaoui M, McDowell DL, Qu J, Jacob KI. Dislocation Nucleation from Bicrystal Interfaces and Grain Boundary Ledges: Relationship to Nanocrystalline Deformation. Journal of the Mechanics and Physics of Solids 2007; 55(11): 2300-2327.
  • Referans19 Li XF, Hu WY, Xiao SF, Huang WQ. Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E: Low-Dimensional Systems Nanostructures 2008; 40(10): 3030-3036.
  • Referans20 Cagin T, Jaramillo-Botero A, Gao G, Goddard WA. Molecular mechanics and molecular dynamics analysis of Drexler–Merkle gears and neon pump. Nanotechnology 1998; 9: 143-152.
  • Referans21 Craighead HG. Nanoelectromechanical systems. Science 2000; 290: 1532-1535.
  • Referans22 Marszalek PE, Greenleaf WJ, Li HB, Oberhauser AF, Fernandez JM. Atomic force microscopy captures quantized plastic deformation in gold nanowires. PNAS 2000; 97: 6282-6286.
  • Referans23 Legoas SB, Galvao DS, Rodrigues V, Ugarte D. Origin of Anomalously Long Interatomic Distances in Suspended Gold Chains. Physical. Review. Letters 2002; 88: 076105.
  • Referans24 Singh D, Sharma P, Parashar A. Atomistic simulations to study point defect dynamics in bi-crystalline niobium. Materials Chemistry and Physics 2020; 255: 123628.
  • Referans25 Yang C, Qi L. Modified embedded-atom method potential of niobium for studies on mechanical properties. Computational Materials Science 2019; 161: 351-363.
  • Referans26 Divya S, Avinash P. Effect of symmetric and asymmetric tilt grain boundaries on the tensile behaviour of bcc-Niobium. Computational Materials Science 2018; 143: 126-132.
  • Referans27 Grill R, Gnadenberger A. Niobium as mint metal: Production-properties-processing. Int. J. Refract. Met. Hard Mater 2006; 24(4): 275-282.
  • Referans28 Singh D, Sharma P, Jindal S, Kumar P, Kumar P, Parashar A. Atomistic simulations to study crack tip behaviour in single crystal of bcc niobium and hcp zirconium. Current Applied Physics 2019; 19: 37-43.
  • Referans29 Abdeslam S, Chihi T. Molecular dynamics study of size and cooling rate effects on physical properties of Niobium nanoclusters. Chinese Journal of Physics 2018; 56: 2710-2717.
  • Referans30 Yang XY, Wu D. The melting behaviors of the Nb(1 1 0) nanofilm: a molecular dynamics study. Applied Surface Science 2010; 256: 3197-3203.
  • Referans31 Zhao JW, Murakoshi K, Yin X, Kiguchi M, Guo Y, Wang N, Liang S, Liu H. Dynamic characterization of the postbreaking behavior of a nanowire. J. Phys. Chem. C 2008; 112: 20088-20094.
  • Referans32 Liu YH, Wang FY, Zhao JW, Jiang LY, Kiguchi M, Murakoshi K. Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire. Physical Chemistry Chemical Physics 2009; 11: 6514-6519.
  • Referans33 Liu YH, Zhao JW, Wang F. Influence of length on shock-induced breaking behavior of copper nanowires. Physical Review B 2009; 80: 115417.
  • Referans34 Spearot DE, Tschopp MA, Jacob KI, McDowell DL. Tensile strength of <100> and <110> tilt bicrystal copper interfaces. Acta Materialia 2007; 55(2): 705-714.
  • Referans35 Spearot DE, Capolungo L, Qu J, Cherkaoui M. On the elastic tensile deformation of <100> bicrystal interfaces in copper Computational. Material Science 2008; 42(1): 57-67.
  • Referans36 Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H. Molecular-Dynamics Simulation: Relationship to Experiments? Acta Materialia 2005; 53: 1-40.
  • Referans37 Frederiksen SL, Jacobsen KW, Schiotz J. Simulations of intergranular fracture in nanocrystalline molybdenum. Acta Materialia 2004; 52: 5019-5029.
  • Referans38 Li X, Hu W, Xiao S, Huang WQ. Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E 2008; 40: 3030-3036.
  • Referans39 Voter AF, Chen SP. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc. 1987 82: 175.
  • Referans40 Cai J, Ye YY. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B 1996; 54: 8398.
  • Referans41 Malins A, Williams SR, Eggers J, Royall CP. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics 2013; 139: 234506.
  • Referans42 http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Referans43 Kazanc S. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics 2013; 91: 833-838.
  • Referans44 Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B 2003; 334: 375-381.
  • Referans45 Jacobus K, Sehitoglu H, Balzer M. Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A 1996; 27(A): 3066-3073.
  • Referans46 Saitoh KI, Liu WK. Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Computational Materials Science 2009; 46: 531-544.
  • Referans47 Malins A, Williams, SR, Eggers J, Royall CP. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics 2013; 139: 234506.
  • Referans48 Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering 2012; 20: 045021.
  • Referans49 Fellinger MR, Park H, Wilkins JW. Force-matched embedded-atom method potential for niobium. Physical Review B 2010; 81: 144119.
  • Referans50 Landman U, Luedtke WD, Salisbury BE, Whetten RL. Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions. Physical Review Letters 1996; 77: 1362.
  • Referans51 Li S, Ding X, Deng J. Superelasticity in bcc nanowires by a reversible twinning mechanism. Physical Review B 2010; 82: 205435.
  • Referans52 Bañuelos EU, Aburto CC, Arce AM. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics 2016; 144: 094504.
  • Referans53 Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X, Lib H. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth 2020; 532: 125382.
  • Referans54 Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 2010; 18(1): 015012.
  • Referans55 Yuan L, Jing P, Shan D, Guo B. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with 3 asymmetric tilt grain boundaries. Applied Surface Science 2017; 392: 1153–1164.
  • Referans56 Li J, Guo JW, Luo H, Fang QH, Wu H, Zhang LC, Liu YW. Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Applied Surface Science 2016; 364: 190-200.
  • Referans57 Cao A, Wei YG, Ma E. Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Physical Review B 2008; 77: 195429.
  • Referans58 Seppala ET, Belak J, Rudd RE. Onset of Void Coalescence during Dynamic Fracture of Ductile Metals. Physical Review Letters 2004; 93: 245503.
  • Referans59 Latapie A, Farkas D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe. Modelling Simulation in Materials Science and Engineering 2003; 11(5): 745-753.
  • Referans60 Paul SK. Effect of twist boundary angle on deformation behavior of 〈100〉 FCC copper nanowires. Computational Materials Science 2018; 150: 24-32.

The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation

Year 2022, Volume: 17 Issue: 2, 309 - 319, 30.09.2022
https://doi.org/10.55525/tjst.1099063

Abstract

In this study, the change in the mechanical properties of Niobium (Nb) nanowire with different grain numbers under applied uniaxial tensile deformation was tried to be investigated by Molecular Dynamics (MD) simulation method. The Embedded Atom Method (EAM), which includes many-body interactions, was used to determine the force interactions between atoms. To determine the effect of grain number on the mechanical properties of Nb nanowire, stress-strain curve, young modulus, yield strain and atomic images obtained from the common neighbor analysis method (CNA) were used. It has been determined that necking and breaking of the model nanowire occur at the grain boundaries, however, the number of grains has important effects on the mechanical properties.

References

  • Referans1 Hansen N. Hall-Petch relation and boundary strengthening. Scripta Materialia 2004; 51(8): 801-806.
  • Referans12 Jang D, Cai C, Greer JR. Influence of Homogeneous Interfaces on the Strength of 500 nm Diameter Cu Nanopillars. Nano Letters 2011; 11: 1743-1746.
  • Referans3 Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper. Science 2009; 323: 607-610.
  • Referans4 Afanasyev KA, Sansoz F. Strengthening in Gold Nanopillars with Nanoscale Twins. Nano Letters 2007; 7(7): 2056-2062.
  • Referans5 Deng C, Sansoz F. Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission. Applied Physics Letters 2009; 95: 091914.
  • Referans6 Zhang JY, Zhang X, Liu G, Zhang GJ, Sun J. Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scripta Materialia 2010; 63: 101-104.
  • Referans7 Zhu XF, Li YP, Zhang GP, Tan J, Liu Y. Understanding nanoscale damage at a crack tip of multilayered metallic composites. Applied Physics Letters 2008; 92: 161905.
  • Referans8 Yan H, Choe HS, Nam S, Hu Y, Das S, Klemic JF, Ellenbogen JC, Lieber CM. Programmable nanowire circuits for nanoprocessors. Nature 2011; 470: 240–244.
  • Referans9 Mourik W, Zuo K, Frolov SM, Plissard SR, Bakkers EPAM, Kouwenhoven LP. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012; 336: 1003-1007.
  • Referans10 Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology 2011; 6(3): 147-150.
  • Referans11 Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Tuning upconversion through energy migration in core-shell nanoparticles.Nature Materials 2011;10(12): 968-973.
  • Referans12 Liu R, Duay J, Lee SB. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chemical Communications 2011; 47(5): 1384-1404.
  • Referans13 Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chemical Society Reviews 2011; 40(1): 44-56.
  • Referans14 Lim LC. Surface intergranular cracking in large strain fatigue. Acta Metallurgica 1987; 35(7): 1653-1662.
  • Referans15 Field DP, Adams BL. Interface cavitation damage in polycrystalline copper. Acta Metallurgicia et Materialia 1992; 40(6): 1145-1157.
  • Referans16 Aifantis KE, Soer WA, De Hosson JTM, Willis JR. Interfaces within strain gradient plasticity: Theory and experiments. Acta Materialia 2006; 54: 5077-5085.
  • Referans17 Swygenhoven HV, Farkas D, Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale. Physical Review B 2000; 62: 831-838.
  • Referans18 Capolungo L, Spearot DE, Cherkaoui M, McDowell DL, Qu J, Jacob KI. Dislocation Nucleation from Bicrystal Interfaces and Grain Boundary Ledges: Relationship to Nanocrystalline Deformation. Journal of the Mechanics and Physics of Solids 2007; 55(11): 2300-2327.
  • Referans19 Li XF, Hu WY, Xiao SF, Huang WQ. Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E: Low-Dimensional Systems Nanostructures 2008; 40(10): 3030-3036.
  • Referans20 Cagin T, Jaramillo-Botero A, Gao G, Goddard WA. Molecular mechanics and molecular dynamics analysis of Drexler–Merkle gears and neon pump. Nanotechnology 1998; 9: 143-152.
  • Referans21 Craighead HG. Nanoelectromechanical systems. Science 2000; 290: 1532-1535.
  • Referans22 Marszalek PE, Greenleaf WJ, Li HB, Oberhauser AF, Fernandez JM. Atomic force microscopy captures quantized plastic deformation in gold nanowires. PNAS 2000; 97: 6282-6286.
  • Referans23 Legoas SB, Galvao DS, Rodrigues V, Ugarte D. Origin of Anomalously Long Interatomic Distances in Suspended Gold Chains. Physical. Review. Letters 2002; 88: 076105.
  • Referans24 Singh D, Sharma P, Parashar A. Atomistic simulations to study point defect dynamics in bi-crystalline niobium. Materials Chemistry and Physics 2020; 255: 123628.
  • Referans25 Yang C, Qi L. Modified embedded-atom method potential of niobium for studies on mechanical properties. Computational Materials Science 2019; 161: 351-363.
  • Referans26 Divya S, Avinash P. Effect of symmetric and asymmetric tilt grain boundaries on the tensile behaviour of bcc-Niobium. Computational Materials Science 2018; 143: 126-132.
  • Referans27 Grill R, Gnadenberger A. Niobium as mint metal: Production-properties-processing. Int. J. Refract. Met. Hard Mater 2006; 24(4): 275-282.
  • Referans28 Singh D, Sharma P, Jindal S, Kumar P, Kumar P, Parashar A. Atomistic simulations to study crack tip behaviour in single crystal of bcc niobium and hcp zirconium. Current Applied Physics 2019; 19: 37-43.
  • Referans29 Abdeslam S, Chihi T. Molecular dynamics study of size and cooling rate effects on physical properties of Niobium nanoclusters. Chinese Journal of Physics 2018; 56: 2710-2717.
  • Referans30 Yang XY, Wu D. The melting behaviors of the Nb(1 1 0) nanofilm: a molecular dynamics study. Applied Surface Science 2010; 256: 3197-3203.
  • Referans31 Zhao JW, Murakoshi K, Yin X, Kiguchi M, Guo Y, Wang N, Liang S, Liu H. Dynamic characterization of the postbreaking behavior of a nanowire. J. Phys. Chem. C 2008; 112: 20088-20094.
  • Referans32 Liu YH, Wang FY, Zhao JW, Jiang LY, Kiguchi M, Murakoshi K. Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire. Physical Chemistry Chemical Physics 2009; 11: 6514-6519.
  • Referans33 Liu YH, Zhao JW, Wang F. Influence of length on shock-induced breaking behavior of copper nanowires. Physical Review B 2009; 80: 115417.
  • Referans34 Spearot DE, Tschopp MA, Jacob KI, McDowell DL. Tensile strength of <100> and <110> tilt bicrystal copper interfaces. Acta Materialia 2007; 55(2): 705-714.
  • Referans35 Spearot DE, Capolungo L, Qu J, Cherkaoui M. On the elastic tensile deformation of <100> bicrystal interfaces in copper Computational. Material Science 2008; 42(1): 57-67.
  • Referans36 Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H. Molecular-Dynamics Simulation: Relationship to Experiments? Acta Materialia 2005; 53: 1-40.
  • Referans37 Frederiksen SL, Jacobsen KW, Schiotz J. Simulations of intergranular fracture in nanocrystalline molybdenum. Acta Materialia 2004; 52: 5019-5029.
  • Referans38 Li X, Hu W, Xiao S, Huang WQ. Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E 2008; 40: 3030-3036.
  • Referans39 Voter AF, Chen SP. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc. 1987 82: 175.
  • Referans40 Cai J, Ye YY. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B 1996; 54: 8398.
  • Referans41 Malins A, Williams SR, Eggers J, Royall CP. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics 2013; 139: 234506.
  • Referans42 http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Referans43 Kazanc S. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics 2013; 91: 833-838.
  • Referans44 Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B 2003; 334: 375-381.
  • Referans45 Jacobus K, Sehitoglu H, Balzer M. Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A 1996; 27(A): 3066-3073.
  • Referans46 Saitoh KI, Liu WK. Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Computational Materials Science 2009; 46: 531-544.
  • Referans47 Malins A, Williams, SR, Eggers J, Royall CP. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics 2013; 139: 234506.
  • Referans48 Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering 2012; 20: 045021.
  • Referans49 Fellinger MR, Park H, Wilkins JW. Force-matched embedded-atom method potential for niobium. Physical Review B 2010; 81: 144119.
  • Referans50 Landman U, Luedtke WD, Salisbury BE, Whetten RL. Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions. Physical Review Letters 1996; 77: 1362.
  • Referans51 Li S, Ding X, Deng J. Superelasticity in bcc nanowires by a reversible twinning mechanism. Physical Review B 2010; 82: 205435.
  • Referans52 Bañuelos EU, Aburto CC, Arce AM. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics 2016; 144: 094504.
  • Referans53 Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X, Lib H. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth 2020; 532: 125382.
  • Referans54 Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 2010; 18(1): 015012.
  • Referans55 Yuan L, Jing P, Shan D, Guo B. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with 3 asymmetric tilt grain boundaries. Applied Surface Science 2017; 392: 1153–1164.
  • Referans56 Li J, Guo JW, Luo H, Fang QH, Wu H, Zhang LC, Liu YW. Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Applied Surface Science 2016; 364: 190-200.
  • Referans57 Cao A, Wei YG, Ma E. Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Physical Review B 2008; 77: 195429.
  • Referans58 Seppala ET, Belak J, Rudd RE. Onset of Void Coalescence during Dynamic Fracture of Ductile Metals. Physical Review Letters 2004; 93: 245503.
  • Referans59 Latapie A, Farkas D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe. Modelling Simulation in Materials Science and Engineering 2003; 11(5): 745-753.
  • Referans60 Paul SK. Effect of twist boundary angle on deformation behavior of 〈100〉 FCC copper nanowires. Computational Materials Science 2018; 150: 24-32.
There are 60 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Sefa Kazanç 0000-0002-8896-8571

Canan Aksu Canbay 0000-0002-5151-4576

Publication Date September 30, 2022
Submission Date April 5, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

APA Kazanç, S., & Aksu Canbay, C. (2022). The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation. Turkish Journal of Science and Technology, 17(2), 309-319. https://doi.org/10.55525/tjst.1099063
AMA Kazanç S, Aksu Canbay C. The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation. TJST. September 2022;17(2):309-319. doi:10.55525/tjst.1099063
Chicago Kazanç, Sefa, and Canan Aksu Canbay. “The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation”. Turkish Journal of Science and Technology 17, no. 2 (September 2022): 309-19. https://doi.org/10.55525/tjst.1099063.
EndNote Kazanç S, Aksu Canbay C (September 1, 2022) The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation. Turkish Journal of Science and Technology 17 2 309–319.
IEEE S. Kazanç and C. Aksu Canbay, “The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation”, TJST, vol. 17, no. 2, pp. 309–319, 2022, doi: 10.55525/tjst.1099063.
ISNAD Kazanç, Sefa - Aksu Canbay, Canan. “The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation”. Turkish Journal of Science and Technology 17/2 (September 2022), 309-319. https://doi.org/10.55525/tjst.1099063.
JAMA Kazanç S, Aksu Canbay C. The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation. TJST. 2022;17:309–319.
MLA Kazanç, Sefa and Canan Aksu Canbay. “The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation”. Turkish Journal of Science and Technology, vol. 17, no. 2, 2022, pp. 309-1, doi:10.55525/tjst.1099063.
Vancouver Kazanç S, Aksu Canbay C. The Investigation of Mechanical Properties of Polycrystalline Nb Nanowire Under Applied Tensile Deformation by Molecular Dynamics Simulation. TJST. 2022;17(2):309-1.