Research Article
BibTex RIS Cite
Year 2023, Volume: 18 Issue: 1, 123 - 130, 29.03.2023
https://doi.org/10.55525/tjst.1202340

Abstract

References

  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. Int Mater Rev 2010; 55: 257–315.
  • Canbay CA. The production of copper based shape memory alloys and investigation of the structural, thermal and electrical properties of alloys. PhD. Fırat University, Elazig, Türkiye, 2010.
  • Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu-Al-Mn shape memory alloy. J Alloys Compd 2009; 469: 156–63.
  • Naresh C, Bose PSC, Rao CSP. Shape memory alloys: a state of art review. IOP Conf Ser Mater Sci Eng 2016; 149: 012054.
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge University Press: 1999.
  • Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014; 56: 1078–113.
  • Özkul İ, Karaduman O, Şimşek T, Şimşek T, Canbay CA, Ibrahim PA, et al. Experimental investigation of the effects of different quaternary elements (Ti, V, Nb, Ga, and Hf) on the thermal and magnetic properties of CuAlNi shape memory alloy. J Mater Res 2022; 37.
  • Canbay CA, Karaduman O. The photo response properties of shape memory alloy thin film based photodiode. J Mol Struct 2021; 1235: 130263.
  • Lambrecht F, Aseguinolaza I, Chernenko V, Kohl M. Integrated SMA-based NEMS actuator for optical switching. In: IEEE 29th 2016 International Conference on Micro Electro Mechanical Systems (MEMS) Conference; 24-28 Jan. 2016; Shanghai, China. New York, NY, USA: IEEE. p. 79–82.
  • Stachiv I, Alarcon E, Lamac M. Shape memory alloys and polymers for mems/nems applications: Review on recent findings and challenges in design, preparation, and characterization. Metals (Basel) 2021; 11: 1–28.
  • Costanza G, Tata ME. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020; 13(8): 1856.
  • Hu K, Rabenorosoa K, Ouisse M. A Review of SMA-Based Actuators for Bidirectional Rotational Motion: Application to Origami Robots. Front Robot AI 2021; 8: 678486.
  • Nespoli A, Passaretti F, Szentmiklósi L, Maróti B, Placidi E, Cassetta M, et al. Biomedical NiTi and β-Ti Alloys: From Composition, Microstructure and Thermo-Mechanics to Application. Metals (Basel) 2022; 12: 406.
  • Riccio A, Sellitto A, Ameduri S, Concilio A, Arena M. Shape memory alloys (SMA) for automotive applications and challenges. In: Concilio A, Antonucci V, Auricchio F, Lecce L, Sacco E, editors. Shape Memory Alloy Engineering (Second Edition). Oxford, UK: Butterworth-Heinemann ,2021. pp. 785–808.
  • Rokaya D, Bohara S, Srimaneepong V, Kongkiatkamon S, Khurshid Z, Heboyan A, et al. Metallic Biomaterials for Medical and Dental Prosthetic Applications. In: Jana S, Jana S, editors. Functional Biomaterials, Singapore: Springer, 2022, pp. 503–22.
  • Fu YQ, Luo JK, Huang WM, Flewitt AJ, Milne WI. Thin film shape memory alloys for optical sensing applications. J Phys Conf Ser 2007; 76(1): pp. 012032.
  • Karaduman O. , Aksu Canbay C. Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material. Turk J Sci Technol 2022; 17(2): pp.329-341.
  • Karaduman O, Canbay CA. Shape Memory Alloy Layered CuAlFeMn/n-Si/Al Photodiode with a High Photo-responsivity Merit and Negative Capacitance. J Mater Electron Device 2022; 1(1): pp.28-35.
  • Karaduman O, Canbay CA. The Photosensitive Properties of a new Photodiode consisting Thin Film CuAlMnNi Shape Memory Alloy Layer Contact. J Mater Electron Device 2022; 1(1): pp.7–16.
  • López-Ferreño I, Gómez-Cortés JF, Breczewski T, Ruiz-Larrea I, Nó ML, San Juan JM. High-temperature shape memory alloys based on the Cu-Al-Ni system: Design and thermomechanical characterization. J of Mater Res and Tech 2020; 9: pp.9972–84.
  • Nnamchi P, Younes A, González S. A review on shape memory metallic alloys and their critical stress for twinning. Intermetallics 2019; 105: pp.61–78.
  • Canbay CA, Karaduman O, Ünlü N, Baiz SA, Özkul İ. Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy. Compos B Eng 2019; 174: pp.106940.
  • [Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects. J Mater Res 2014; 29: pp.1681–98.
  • Mazzer EM, da Silva MR, Gargarella P. Revisiting Cu-based shape memory alloys: Recent developments and new perspectives. J Mater Res 2022; 37: pp.162–82.
  • Al-Humairi SNS. Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. In: Al-Naib B, Vikraman D, Karuppasamy K, editors. Recent Advancements in the Metallurgical Engineering and Electrodeposition. London UK: IntechOpen, 2020. p. 25.
  • Karaduman O, Canbay CA. Investigation of CuAlNi Shape Memory Alloy Doped with Graphene. J Mater Electron Device 2021; 3: pp.8–14.
  • Canbay CA, Başbağ G, Karaduman O, Boyrazli M. Magnesium Effect on Characteristic Properties of Cu-based Smart Materials. J Mater Electron Device 2021; 2: pp.19–23.
  • Canbay CA, Karaduman O, Ünlü N, Özkul I. Study on Basic Characteristics of CuAlBe Shape Memory Alloy. Brazillian J Phys 2021; 51: pp.13–8.
  • Canbay CA, Karaduman O, Ünlü N, Özkul İ. An exploratory research of calorimetric and structural shape memory effect characteristics of Cu–Al–Sn alloy. Physica B Condens Matter 2020; 580: pp.411932.
  • Canbay CA, Karaduman O, Ünlü N, Özkul İ, Çiçek MA. Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys. Trans Indian Inst Met 2021; 74(10): pp.2447-2458.
  • Karaduman O, Özkul I, Altın S, Altın E, Baǧlayan, Canbay CA. New Cu-Al based quaternary and quinary high temperature shape memory alloy composition systems. AIP Conf Proc 2018; 2042(1): p.020030.
  • Canbay CA, Çiçek MA, Karaduman O, Özkul İ, Şekerci M. Investigation of Thermoelastical Martensitic Transformations and Structure in New Composition of CuAlMnTi Shape Memory Alloy. J of Mater and Elec Dev 2019; 1(1): pp.60–64.
  • Yang J, Wang QZ, Yin FX, Cui CX, Ji PG, Li B. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Mater Sci and Eng A 2016; 664: pp.215–20.
  • Sutou Y, Omori T, Okamoto T, Kainuma R, Ishida K. Effect of grain refinement on the mechanical and shape memory properties of Cu-Al-Mn base alloys. J Phys IV 2001; 11(PR8): pp.185-190.
  • Canbay CA, Karagoz Z. The effect of quaternary element on the thermodynamic parameters and structure of CuAlMn shape memory alloys. Appl Phys A Mater Sci Process 2013; 113: pp.19–25.
  • Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloys Compd 2009; 469: pp.156–63.
  • Wu S-K, Chan W-J, Chang S-H. Damping Characteristics of Inherent and Intrinsic Internal Friction of Cu-Zn-Al Shape Memory Alloys. Metals (Basel) 2017; 7: pp.397.
  • Karaduman O, Canbay CA, Ünlü N, Özkul S. Structural and thermodynamical study of Cu-Zn-Al shape memory alloys with new compositions produced by hot isostatic press (HIP). AIP Conf Proc 2019; 2178(1): p.030040.
  • Alkan S, Wu Y, Ojha A, Sehitoglu H. Transformation stress of shape memory alloy CuZnAl: Non-Schmid behavior. Acta Mater 2018; 149: pp.220–34.
  • Gomidželović L, Požega E, Kostov A, Vuković N, Krstić V, Živković D, et al. Thermodynamics and characterization of shape memory Cu-Al-Zn alloys. Trans Nonferrous Met Soc China (English Edition) 2015; 25: pp.2630–6.
  • Chentouf SM, Bouabdallah M, Gachon J-C, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectoidal Cu–Al–Ni shape memory alloys. J Alloys Compd 2009; 470(1-2): pp.507-514.
  • Canbay CA, Karaduman O, Özkul İ. Investigation of varied quenching media effects on the thermodynamical and structural features of a thermally aged CuAlFeMn HTSMA. Physica B Condens Matter 2019; 557: pp.117–25.
  • Pérez-Landazábal JI, Recarte V, Sánchez-Alarcos V. Influence on the martensitic transformation of the β phase decomposition process in a Cu-Al-Ni shape memory alloy. J. Phys. Condens. Matter 2005; 17(26): pp.4223–36.
  • Canbay CA, Karaduman O, Özkul İ, Ünlü N. Modifying Thermal and Structural Characteristics of CuAlFeMn Shape Memory Alloy and a Hypothetical Analysis to Optimize Surface-Diffusion Annealing Temperature. J Mater Eng Perform 2020; 29: pp.7993–8005.
  • Karaduman O, Özkul İ, Canbay CA. Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method. Ad Eng Sci 2021; 1: pp.26–33.
  • Guilemany JM, Fernández J, Franch R, Benedetti A , Adorno AT. A New Cu-Based SMA with Extremely High Martensitic Transformation Temperatures. J Phys IV 1995; 05: pp. C2-361-C2-365.
  • Mañosa L, Planes A, Ortín J, Martínez B. Entropy change of martensitic transformations in Cu-based shape-memory alloys. Phys Rev B 1993; 48: pp.3611–9.
  • Sari U, Aksoy I. Electron microscopy study of 2H and 18R martensites in Cu-11.92 wt% Al-3.78 wt% Ni shape memory alloy. J Alloys Compd 2006; 417: pp.138–42.
  • Suzuki T, Kojima R, Fujii Y, Nagasawa A. Reverse transformation behavior of the stabilized martensite in CuZnAl alloy. Acta Metall 1989; 37: pp.163–8.
  • Ma J, Liu C, Chen K. Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces. Sci Rep 2016; 6(1): pp.1-11.
  • Jiraskova Y, Bursik J, Janos P, Lunacek J, Chrobak A, Zivotsky O. Effect of iron impurities on magnetic properties of nanosized CeO2 and Ce-based compounds. Metals (Basel) 2019; 9(2): pp.222.
  • Başbağ G, Karaduman O, Özkul İ, Canbay CA, Boyrazlı M. Thermo-structural Shape Memory Effect Characterization of Novel CuAlCoMg HTSMA with Ternary Co and Quaternary Mg Addititions. J Mater Electron Device 2022; 2: pp.34–9.
  • Castañeda EJG, Castro REB, Briseño AC, Arguijo BF, Castillo AAT, Rodríguez AS, et al. Effect of quenching and normalizing on the microstructure and magnetocaloric effect of a Cu–11Al–9Zn alloy with 6.5 wt % Ni–2.5 wt % Fe. Magnetochemistry 2019; 5(3): pp.48.
  • Başbağ G, Karaduman O, Özkul İ, Boyrazli M, Canbay CA. Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu. Fırat Üni Fen Bil. Dergisi 2022; 34: pp.161–70.

Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions

Year 2023, Volume: 18 Issue: 1, 123 - 130, 29.03.2023
https://doi.org/10.55525/tjst.1202340

Abstract

Shape memory alloys (SMAs) constitute the second largest commercial smart material class after piezoelectric materials. Different SMA alloy systems or SMAs with miscellaneous functionalities and characteristic properties have been designed for using in different applications until today. High temperature shape memory alloys (HTSMAs) are also widely desired to be used in various smart materials applications. HTSMAs with different functional and characteristic properties are muchly demanded for different tasks to be done by these alloys or devices designed by these alloys. A common and practical way to fabricate SMAs or HTSMAs with different shape memory effect (SME) and other properties is to fabricate them with different alloying compositions and add different additive elements. In this work, a quaternary CuAlZnMg HTSMA with an unprecedented composition consisting minor amount of zinc and magnesium additives was produced by arc melting method. As a result of applying post-homogenization in high β–phase temperature region and immediate quenching, the microstructural mechanism of a SME property was formed in the produced alloy. After then, to examine SME characteristics of the CuAlZnMg alloy some differential thermal analysis (DTA), microstructural (XRD) and magnetization (VSM) characterization tests were carried out. The DTA results showed that the alloy is a HTSMA exhibiting reverse martensitic transformations at temperature range between 167 °C and 489 °C. The XRD pattern obtained at room temperature revealed the martensite phases formed in the alloy, which phases are the base mechanism of the reversible martensitic transformation (the SME property) of the alloy. The VSM test showed that the alloy exhibit a diamagnetic property with a weak ferromagnetic coercivity contribution.

References

  • Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. Int Mater Rev 2010; 55: 257–315.
  • Canbay CA. The production of copper based shape memory alloys and investigation of the structural, thermal and electrical properties of alloys. PhD. Fırat University, Elazig, Türkiye, 2010.
  • Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu-Al-Mn shape memory alloy. J Alloys Compd 2009; 469: 156–63.
  • Naresh C, Bose PSC, Rao CSP. Shape memory alloys: a state of art review. IOP Conf Ser Mater Sci Eng 2016; 149: 012054.
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge University Press: 1999.
  • Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014; 56: 1078–113.
  • Özkul İ, Karaduman O, Şimşek T, Şimşek T, Canbay CA, Ibrahim PA, et al. Experimental investigation of the effects of different quaternary elements (Ti, V, Nb, Ga, and Hf) on the thermal and magnetic properties of CuAlNi shape memory alloy. J Mater Res 2022; 37.
  • Canbay CA, Karaduman O. The photo response properties of shape memory alloy thin film based photodiode. J Mol Struct 2021; 1235: 130263.
  • Lambrecht F, Aseguinolaza I, Chernenko V, Kohl M. Integrated SMA-based NEMS actuator for optical switching. In: IEEE 29th 2016 International Conference on Micro Electro Mechanical Systems (MEMS) Conference; 24-28 Jan. 2016; Shanghai, China. New York, NY, USA: IEEE. p. 79–82.
  • Stachiv I, Alarcon E, Lamac M. Shape memory alloys and polymers for mems/nems applications: Review on recent findings and challenges in design, preparation, and characterization. Metals (Basel) 2021; 11: 1–28.
  • Costanza G, Tata ME. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020; 13(8): 1856.
  • Hu K, Rabenorosoa K, Ouisse M. A Review of SMA-Based Actuators for Bidirectional Rotational Motion: Application to Origami Robots. Front Robot AI 2021; 8: 678486.
  • Nespoli A, Passaretti F, Szentmiklósi L, Maróti B, Placidi E, Cassetta M, et al. Biomedical NiTi and β-Ti Alloys: From Composition, Microstructure and Thermo-Mechanics to Application. Metals (Basel) 2022; 12: 406.
  • Riccio A, Sellitto A, Ameduri S, Concilio A, Arena M. Shape memory alloys (SMA) for automotive applications and challenges. In: Concilio A, Antonucci V, Auricchio F, Lecce L, Sacco E, editors. Shape Memory Alloy Engineering (Second Edition). Oxford, UK: Butterworth-Heinemann ,2021. pp. 785–808.
  • Rokaya D, Bohara S, Srimaneepong V, Kongkiatkamon S, Khurshid Z, Heboyan A, et al. Metallic Biomaterials for Medical and Dental Prosthetic Applications. In: Jana S, Jana S, editors. Functional Biomaterials, Singapore: Springer, 2022, pp. 503–22.
  • Fu YQ, Luo JK, Huang WM, Flewitt AJ, Milne WI. Thin film shape memory alloys for optical sensing applications. J Phys Conf Ser 2007; 76(1): pp. 012032.
  • Karaduman O. , Aksu Canbay C. Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material. Turk J Sci Technol 2022; 17(2): pp.329-341.
  • Karaduman O, Canbay CA. Shape Memory Alloy Layered CuAlFeMn/n-Si/Al Photodiode with a High Photo-responsivity Merit and Negative Capacitance. J Mater Electron Device 2022; 1(1): pp.28-35.
  • Karaduman O, Canbay CA. The Photosensitive Properties of a new Photodiode consisting Thin Film CuAlMnNi Shape Memory Alloy Layer Contact. J Mater Electron Device 2022; 1(1): pp.7–16.
  • López-Ferreño I, Gómez-Cortés JF, Breczewski T, Ruiz-Larrea I, Nó ML, San Juan JM. High-temperature shape memory alloys based on the Cu-Al-Ni system: Design and thermomechanical characterization. J of Mater Res and Tech 2020; 9: pp.9972–84.
  • Nnamchi P, Younes A, González S. A review on shape memory metallic alloys and their critical stress for twinning. Intermetallics 2019; 105: pp.61–78.
  • Canbay CA, Karaduman O, Ünlü N, Baiz SA, Özkul İ. Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy. Compos B Eng 2019; 174: pp.106940.
  • [Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects. J Mater Res 2014; 29: pp.1681–98.
  • Mazzer EM, da Silva MR, Gargarella P. Revisiting Cu-based shape memory alloys: Recent developments and new perspectives. J Mater Res 2022; 37: pp.162–82.
  • Al-Humairi SNS. Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. In: Al-Naib B, Vikraman D, Karuppasamy K, editors. Recent Advancements in the Metallurgical Engineering and Electrodeposition. London UK: IntechOpen, 2020. p. 25.
  • Karaduman O, Canbay CA. Investigation of CuAlNi Shape Memory Alloy Doped with Graphene. J Mater Electron Device 2021; 3: pp.8–14.
  • Canbay CA, Başbağ G, Karaduman O, Boyrazli M. Magnesium Effect on Characteristic Properties of Cu-based Smart Materials. J Mater Electron Device 2021; 2: pp.19–23.
  • Canbay CA, Karaduman O, Ünlü N, Özkul I. Study on Basic Characteristics of CuAlBe Shape Memory Alloy. Brazillian J Phys 2021; 51: pp.13–8.
  • Canbay CA, Karaduman O, Ünlü N, Özkul İ. An exploratory research of calorimetric and structural shape memory effect characteristics of Cu–Al–Sn alloy. Physica B Condens Matter 2020; 580: pp.411932.
  • Canbay CA, Karaduman O, Ünlü N, Özkul İ, Çiçek MA. Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys. Trans Indian Inst Met 2021; 74(10): pp.2447-2458.
  • Karaduman O, Özkul I, Altın S, Altın E, Baǧlayan, Canbay CA. New Cu-Al based quaternary and quinary high temperature shape memory alloy composition systems. AIP Conf Proc 2018; 2042(1): p.020030.
  • Canbay CA, Çiçek MA, Karaduman O, Özkul İ, Şekerci M. Investigation of Thermoelastical Martensitic Transformations and Structure in New Composition of CuAlMnTi Shape Memory Alloy. J of Mater and Elec Dev 2019; 1(1): pp.60–64.
  • Yang J, Wang QZ, Yin FX, Cui CX, Ji PG, Li B. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Mater Sci and Eng A 2016; 664: pp.215–20.
  • Sutou Y, Omori T, Okamoto T, Kainuma R, Ishida K. Effect of grain refinement on the mechanical and shape memory properties of Cu-Al-Mn base alloys. J Phys IV 2001; 11(PR8): pp.185-190.
  • Canbay CA, Karagoz Z. The effect of quaternary element on the thermodynamic parameters and structure of CuAlMn shape memory alloys. Appl Phys A Mater Sci Process 2013; 113: pp.19–25.
  • Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloys Compd 2009; 469: pp.156–63.
  • Wu S-K, Chan W-J, Chang S-H. Damping Characteristics of Inherent and Intrinsic Internal Friction of Cu-Zn-Al Shape Memory Alloys. Metals (Basel) 2017; 7: pp.397.
  • Karaduman O, Canbay CA, Ünlü N, Özkul S. Structural and thermodynamical study of Cu-Zn-Al shape memory alloys with new compositions produced by hot isostatic press (HIP). AIP Conf Proc 2019; 2178(1): p.030040.
  • Alkan S, Wu Y, Ojha A, Sehitoglu H. Transformation stress of shape memory alloy CuZnAl: Non-Schmid behavior. Acta Mater 2018; 149: pp.220–34.
  • Gomidželović L, Požega E, Kostov A, Vuković N, Krstić V, Živković D, et al. Thermodynamics and characterization of shape memory Cu-Al-Zn alloys. Trans Nonferrous Met Soc China (English Edition) 2015; 25: pp.2630–6.
  • Chentouf SM, Bouabdallah M, Gachon J-C, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectoidal Cu–Al–Ni shape memory alloys. J Alloys Compd 2009; 470(1-2): pp.507-514.
  • Canbay CA, Karaduman O, Özkul İ. Investigation of varied quenching media effects on the thermodynamical and structural features of a thermally aged CuAlFeMn HTSMA. Physica B Condens Matter 2019; 557: pp.117–25.
  • Pérez-Landazábal JI, Recarte V, Sánchez-Alarcos V. Influence on the martensitic transformation of the β phase decomposition process in a Cu-Al-Ni shape memory alloy. J. Phys. Condens. Matter 2005; 17(26): pp.4223–36.
  • Canbay CA, Karaduman O, Özkul İ, Ünlü N. Modifying Thermal and Structural Characteristics of CuAlFeMn Shape Memory Alloy and a Hypothetical Analysis to Optimize Surface-Diffusion Annealing Temperature. J Mater Eng Perform 2020; 29: pp.7993–8005.
  • Karaduman O, Özkul İ, Canbay CA. Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method. Ad Eng Sci 2021; 1: pp.26–33.
  • Guilemany JM, Fernández J, Franch R, Benedetti A , Adorno AT. A New Cu-Based SMA with Extremely High Martensitic Transformation Temperatures. J Phys IV 1995; 05: pp. C2-361-C2-365.
  • Mañosa L, Planes A, Ortín J, Martínez B. Entropy change of martensitic transformations in Cu-based shape-memory alloys. Phys Rev B 1993; 48: pp.3611–9.
  • Sari U, Aksoy I. Electron microscopy study of 2H and 18R martensites in Cu-11.92 wt% Al-3.78 wt% Ni shape memory alloy. J Alloys Compd 2006; 417: pp.138–42.
  • Suzuki T, Kojima R, Fujii Y, Nagasawa A. Reverse transformation behavior of the stabilized martensite in CuZnAl alloy. Acta Metall 1989; 37: pp.163–8.
  • Ma J, Liu C, Chen K. Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces. Sci Rep 2016; 6(1): pp.1-11.
  • Jiraskova Y, Bursik J, Janos P, Lunacek J, Chrobak A, Zivotsky O. Effect of iron impurities on magnetic properties of nanosized CeO2 and Ce-based compounds. Metals (Basel) 2019; 9(2): pp.222.
  • Başbağ G, Karaduman O, Özkul İ, Canbay CA, Boyrazlı M. Thermo-structural Shape Memory Effect Characterization of Novel CuAlCoMg HTSMA with Ternary Co and Quaternary Mg Addititions. J Mater Electron Device 2022; 2: pp.34–9.
  • Castañeda EJG, Castro REB, Briseño AC, Arguijo BF, Castillo AAT, Rodríguez AS, et al. Effect of quenching and normalizing on the microstructure and magnetocaloric effect of a Cu–11Al–9Zn alloy with 6.5 wt % Ni–2.5 wt % Fe. Magnetochemistry 2019; 5(3): pp.48.
  • Başbağ G, Karaduman O, Özkul İ, Boyrazli M, Canbay CA. Yeni CuAlCrMg Yüksek Sıcaklık Şekil Hafızalı Alaşımının (YSŞHA) Termal, Yapısal ve Manyetik Karakterizasyonu. Fırat Üni Fen Bil. Dergisi 2022; 34: pp.161–70.
There are 54 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Güneş Başbağ 0000-0001-6766-1741

Oktay Karaduman 0000-0002-6947-7590

İskender Özkul 0000-0003-4255-0564

Canan Aksu Canbay 0000-0002-5151-4576

Mustafa Boyrazlı 0000-0002-2340-6703

Publication Date March 29, 2023
Submission Date November 10, 2022
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Başbağ, G., Karaduman, O., Özkul, İ., Aksu Canbay, C., et al. (2023). Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions. Turkish Journal of Science and Technology, 18(1), 123-130. https://doi.org/10.55525/tjst.1202340
AMA Başbağ G, Karaduman O, Özkul İ, Aksu Canbay C, Boyrazlı M. Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions. TJST. March 2023;18(1):123-130. doi:10.55525/tjst.1202340
Chicago Başbağ, Güneş, Oktay Karaduman, İskender Özkul, Canan Aksu Canbay, and Mustafa Boyrazlı. “Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions”. Turkish Journal of Science and Technology 18, no. 1 (March 2023): 123-30. https://doi.org/10.55525/tjst.1202340.
EndNote Başbağ G, Karaduman O, Özkul İ, Aksu Canbay C, Boyrazlı M (March 1, 2023) Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions. Turkish Journal of Science and Technology 18 1 123–130.
IEEE G. Başbağ, O. Karaduman, İ. Özkul, C. Aksu Canbay, and M. Boyrazlı, “Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions”, TJST, vol. 18, no. 1, pp. 123–130, 2023, doi: 10.55525/tjst.1202340.
ISNAD Başbağ, Güneş et al. “Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions”. Turkish Journal of Science and Technology 18/1 (March 2023), 123-130. https://doi.org/10.55525/tjst.1202340.
JAMA Başbağ G, Karaduman O, Özkul İ, Aksu Canbay C, Boyrazlı M. Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions. TJST. 2023;18:123–130.
MLA Başbağ, Güneş et al. “Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions”. Turkish Journal of Science and Technology, vol. 18, no. 1, 2023, pp. 123-30, doi:10.55525/tjst.1202340.
Vancouver Başbağ G, Karaduman O, Özkul İ, Aksu Canbay C, Boyrazlı M. Novel Quaternary CuAlZnMg High Temperature Shape Memory Alloy (HTSMA) Fabricated by Minor Batch of Zn and Mg Additions. TJST. 2023;18(1):123-30.