Research Article
BibTex RIS Cite

Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types

Year 2023, Volume: 18 Issue: 2, 379 - 385, 01.09.2023
https://doi.org/10.55525/tjst.1314368

Abstract

Scientific evidence showing the harmful effects of ultraviolet radiation on different ocular tissues has led manufacturers to incorporate UV-blocking monomers into contact lenses. In this study, the spectral and optical properties of contact lenses were analyzed in the ultraviolet and visible light wavelength ranges using the Jasco V-730 UV/VIS spectrophotometer device. The results obtained showed that in the lens samples examined, the light transmittance in the wavelength (550nm) range to which the human eye is most sensitive is over 70% and the maximum value is 72.98% in B contact lenses. The largest cutting edge wavelength value was obtained in the A contact lens as 376 nm. At 550 nm, the absorption spectra were found to be below 0.12. In terms of visual quality, visible light transmittance is expected to be high and ultraviolet light transmittance is expected to be minimal. The degree of damage caused by the amount of ultraviolet light absorption increases. Among the contact lenses with and without ultraviolet-protected monomers, lens A did not transmit the UV-B wavelength region, while lens B transmitted UV-A and UV-B wavelengths. This result showed that the protection of lens A was higher. It is seen that the UV transmittance taken with the phocometer is 45% UV in A lens and 91% UV in B lens. The results obtained by UV/VIS spectrophotometer and phocometer supported each other. The results will contribute to the literature by revealing the importance of UV-protected monomer-containing contact lenses in vision equipment, and by enabling the development and selection of full-protection contact lenses.

Supporting Institution

Tübitak (2209-A)

Project Number

1919B012210596

Thanks

The application numbered 1919B012210596 within the scope of the 2209-A University Students Research Projects Support Program, carried out by the TÜBİTAK Scientist Support Programs Presidency (BİDEB) in the 1st term of 2022, was entitled to receive support. We would like to thank Şırnak University for enabling the use of the Technology and Research Center Laboratory in the spectral analysis of contact lenses with the UV/VIS Spectrophotometer device in the project titled "Measurement of UV Light Transmittance of Different Types of Contact Lenses".

References

  • Concepcion-Grande P, González A, Chamorro E, Miguel Cleva J, Alonso J, Gómez-Pedrero JA. Eye movements as a predictor of preference for progressive power lenses. J Eye Mov Res 2022; 15(2): 1-14
  • Dillehay SM. Does the level of available oxygen impact comfort in contact lens wear? A review of the literature. Eye Cont Lens 2007; 33(3):148-155.
  • Karadağ AS, Bağdaş M, Bilen A, Önder F. Demographic data of patients using contact lenses. Acta Med Nicomedia 2021; 4(1): 1-3.
  • Podskochy A. Protective role of corneal epithelium against ultraviolet radiation damage.Acta Ophthalmologica Scandinavica 2004; 82(6): 714-717
  • Kanpolat A. Contact Lenses: Past, Present, Future. Türkiye Klinikleri J Ophthalmol-Special Topics 2008; 1(1):1-13.
  • Efron N, Morgan PB, Nichols JJ, Walsh K, Willcox MD, Wolffsohn JS, Jones LW. All soft contact lenses are not created equal. Cont Lens Anterıor Eye 2022; 45(2): 1-10
  • McCanna DJ, Driot JY, Hartsook R, Ward KW. Rabbit models of contact lens–associated corneal hypoxia: a review of the literature. Eye Cont Lens 2008; 34(3): 160-165.
  • Bergmanson J, Söderberg P. The significance of ultraviolet radiation for eye diseases: a review with comments on the efficacy of UV-blocking contact lenses. Ophthalmic Physiol Opt 1995;15(2): 83-91.
  • Quesnel NM, Simonet P. Spectral transmittance of UV-absorbing soft and rigid gas permeable contact lenses. Optom Vis Sci 1995; 72(1): 2-10.
  • Ringvold A. Corneal epithelium and UV‐protection of the eye. Acta Ophthalmol Scand 1998; 76(2): 149-153.
  • Ayala MN, Michael R, Söderberg PG. Influence of exposure time for UV radiation–induced cataract. Invest Oftalmol Vis Sci 2000; 41(11): 3539-3543.
  • Merriam JC, Löfgren S, Michael R, Söderberg P, Dillon J, Zheng L, Ayala M. An action spectrum for UV-B radiation and the rat lens. Invest Oftalmol Vis Sci 2000; 41(9): 2642-2647.
  • Bergmanson JP, Pitts DG, Chu LW. Protection against UVR using the vistakon UV-bloc soft contact lens. Acta Ophthalmol (Copenk) 1987; 14(1): 279-286.
  • Bergmanson JP, Sheldon TM. Ultraviolet radiation revisited. Eye Cont Lens 1997; 23(3): 196-204.
  • Coroneo M. Ultraviolet radiation and the anterior eye. Eye Cont Lens 2011; 37(4): 214-224.
  • Lai CF, Li JS, Fang YT, Chien CJ, Lee CH. UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC advances 2018; 8(8): 4006-4013.
  • Ateş G, Bilici S. İnvestıgatıon of spectral and optıcal propertıes of some organıc eyeglass lenses. Journal of Inonu University Health Services Vocational School 2023; 11(1): 1042-1053.
  • Harris MG, Chin RS, Lee DS, Tam MH, Dobkin CE. Ultraviolet transmittance of the Vistakon disposable contact lenses. Cont Lens Anterıo Eye 2000; 23(1): 10-15.
  • Harris MG, Dang M, Garrod S, Wong W. Ultraviolet transmittance of contact lenses. Optom Vis Sci 1994;71(1):1-5.
  • Raffe D. The concept of transition system. J Educ Work 2008; 21(4): 277-296.
  • Rahmani S, Mohammadi Nia M, Akbarzadeh Baghban A, Nazari MR, Ghassemi-Broumand M. Spectral transmittance of UV-blocking soft contact lenses: a comparative study.Cont Lens Anterior Eye 2014; 37(6): 451-454
  • Rocha FS, Gomes AJ, Lunardi CN, Kaliguine S, Patience GS. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy UV‐Vis. T Can J For Chem Eng 2018; 96(12): 2512-2517.
  • Bergmanson J, Söderberg P. The significance of ultraviolet radiation for eye diseases: a review with comments on the efficacy of UV-blocking contact lenses. Ophthalmic Physiol Opt 1995; 15(2): 83-91.
  • Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol 1997; 41(4): 275-313.
  • Pitts DG, Cullen AP, Hacker PD. Ocular effects of ultraviolet radiation from 295 to 365 nm. Invest Oftalmol Vis Sci 1977;16(10): 932-939.
  • Dumbleton KA, Cullen AP, Doughty MJ. Protection from acute exposure to ultraviolet radiation by ultraviolet‐absorbing RGP contact lenses. Ophthalmic Physiol Opt 1991;11(3): 232-238.
  • Walsh JE, Bergmanson JP. Does the eye benefit from wearing ultraviolet-blocking contact lenses? Eye Cont Lens 2011; 37(4): 267-272.
  • Harris MG, Chamberlain MD. Light Transmission of Hydrogel Contact Lenses. Am J Optom Physiol Opt 1978; 55(2): 93-96.
  • Bergmanson JP, Sheldon TM. Ultraviolet radiation revisited. CLAO J 1997; 23(3): 196-204.
  • Genç S, Sands J. Sun and the eye: prevention and detection of light-induced disease. Clin Dermatol 1998; 16(4): 477-485.
  • Bilici S, Kamislioglu M, Guclu EEA. A Monte Carlo simulation study on the evaluation of radiation protection properties of spectacle lens materials. Eur Phys J Plus 2023; 138(1): 1-13.
  • Bilici S, Bilici A, Külahcı F. Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses. Turkish Journal of Science and Technology 2022; 17 (1): 23-35.
  • American National Standards Institute (ANSI), American National Standart Requirements for Non- Prescription Sunglasses and Fashion Eyewear, Standart Z80.3-1996, ANSI, New York, 1996
  • Rahmani S, Mohammadi Nia M, Akbarzadeh Baghban A, Nazari MR, Ghassemi-Broumand M. Spectral transmittance of UV-blocking soft contact lenses: a comparative study. Cont Lens Anterior Eye 2014; 37(6): 451-454.
  • Faubl H, Quinn MH. Spectra of UV-absorbing contact lenses: relative performance. Inte Cont Lens Clinic 2000; 27(3): 65-74.
  • Mutlu HK, Ekem N. Analysis of the Anti-Reflection Coated Eyeglass Used in Turkey. International Journal of Eastern Anatolia Science Engineering and Desing 2021;3(1):157-166.
  • Moore L, Ferreira JT. Ultraviolet (UV) transmittance characteristics of daily disposable and silicone hydrogel contact lenses. Cont Lens Anterio Eye 2006; 29(3):115-122.
  • Kalaycı T, Kınaytürk NK, Tunalı B. Experimental and theoretical investigations (FTIR, UV-VIS spectroscopy, HOMO-LUMO, NLO and MEP analysis) of aminothiophenol isomers. Bull Chem Soc Ethiopia 2021; 35(3): 601-614.

Farklı Türden Kontak Lenslerin Ultraviyole Işık Geçirgenliğinin Ölçülmesi

Year 2023, Volume: 18 Issue: 2, 379 - 385, 01.09.2023
https://doi.org/10.55525/tjst.1314368

Abstract

Ultraviyole radyasyonun farklı oküler dokular üzerinde zararlı etkilerini gösteren bilimsel kanıtlar üreticileri UV bloke edici monomerleri kontak lenslere dâhil etmeye yönlendirmiştir. Bu araştırmada, kontak lenslerin spektral ve optik özellikleri ultraviyole ve görünür ışık dalga boyu aralıklarında JASCO V-730 UV/Vis spektrofotometre cihazı kullanılarak analiz edildi Elde edilen sonuçlar incelenen kontak lens örneklerinde insan gözünün en duyarlı olduğu dalga boyu (550 nm) aralığında ışık geçirgenliğinin %70’nin üzerinde olduğunu ve maksimum değere %72,98 olarak B kontak lensin sahip olduğunu gösterdi. En büyük kesme kenarı dalga boyu değeri A kontak lensinde 376 nm olarak elde edildi.550 nm’de soğurma spektrumlarının ise 0.12 altında olduğu bulundu. Görme kalitesi açısından görünür ışık geçirgenliğinin yüksek olması, ultraviyole ışık geçirgenliğinin minimum olması beklenir. Ultraviyole korumalı monomer içeren ve içermeyen kontak lenslerden A lensinin UV-B dalga boyu bölgesini geçirmediği, B lensinin ise UV-A ve UV-B dalga boylarını geçirdiği görüldü. Bu sonuç A lensinin korumasının daha yüksek olduğunu gösterdi. Fokometre ile alınan UV geçirgenlikleri A lensinde %45, B lensinde %91 olarak görülmektedir. UV/Vis spektrofotometre ile fokometreden alınan sonuçlar birbirini destekledi. Sonuçlar, görme gereçlerinde UV korumalı monomer içerikli kontak lenslerin önemini ortaya çıkararak, tam korumalı kontak lenslerin geliştirilmesini ve seçilmesini sağlayarak literatüre katkı sağlayacaktır.

Project Number

1919B012210596

References

  • Concepcion-Grande P, González A, Chamorro E, Miguel Cleva J, Alonso J, Gómez-Pedrero JA. Eye movements as a predictor of preference for progressive power lenses. J Eye Mov Res 2022; 15(2): 1-14
  • Dillehay SM. Does the level of available oxygen impact comfort in contact lens wear? A review of the literature. Eye Cont Lens 2007; 33(3):148-155.
  • Karadağ AS, Bağdaş M, Bilen A, Önder F. Demographic data of patients using contact lenses. Acta Med Nicomedia 2021; 4(1): 1-3.
  • Podskochy A. Protective role of corneal epithelium against ultraviolet radiation damage.Acta Ophthalmologica Scandinavica 2004; 82(6): 714-717
  • Kanpolat A. Contact Lenses: Past, Present, Future. Türkiye Klinikleri J Ophthalmol-Special Topics 2008; 1(1):1-13.
  • Efron N, Morgan PB, Nichols JJ, Walsh K, Willcox MD, Wolffsohn JS, Jones LW. All soft contact lenses are not created equal. Cont Lens Anterıor Eye 2022; 45(2): 1-10
  • McCanna DJ, Driot JY, Hartsook R, Ward KW. Rabbit models of contact lens–associated corneal hypoxia: a review of the literature. Eye Cont Lens 2008; 34(3): 160-165.
  • Bergmanson J, Söderberg P. The significance of ultraviolet radiation for eye diseases: a review with comments on the efficacy of UV-blocking contact lenses. Ophthalmic Physiol Opt 1995;15(2): 83-91.
  • Quesnel NM, Simonet P. Spectral transmittance of UV-absorbing soft and rigid gas permeable contact lenses. Optom Vis Sci 1995; 72(1): 2-10.
  • Ringvold A. Corneal epithelium and UV‐protection of the eye. Acta Ophthalmol Scand 1998; 76(2): 149-153.
  • Ayala MN, Michael R, Söderberg PG. Influence of exposure time for UV radiation–induced cataract. Invest Oftalmol Vis Sci 2000; 41(11): 3539-3543.
  • Merriam JC, Löfgren S, Michael R, Söderberg P, Dillon J, Zheng L, Ayala M. An action spectrum for UV-B radiation and the rat lens. Invest Oftalmol Vis Sci 2000; 41(9): 2642-2647.
  • Bergmanson JP, Pitts DG, Chu LW. Protection against UVR using the vistakon UV-bloc soft contact lens. Acta Ophthalmol (Copenk) 1987; 14(1): 279-286.
  • Bergmanson JP, Sheldon TM. Ultraviolet radiation revisited. Eye Cont Lens 1997; 23(3): 196-204.
  • Coroneo M. Ultraviolet radiation and the anterior eye. Eye Cont Lens 2011; 37(4): 214-224.
  • Lai CF, Li JS, Fang YT, Chien CJ, Lee CH. UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC advances 2018; 8(8): 4006-4013.
  • Ateş G, Bilici S. İnvestıgatıon of spectral and optıcal propertıes of some organıc eyeglass lenses. Journal of Inonu University Health Services Vocational School 2023; 11(1): 1042-1053.
  • Harris MG, Chin RS, Lee DS, Tam MH, Dobkin CE. Ultraviolet transmittance of the Vistakon disposable contact lenses. Cont Lens Anterıo Eye 2000; 23(1): 10-15.
  • Harris MG, Dang M, Garrod S, Wong W. Ultraviolet transmittance of contact lenses. Optom Vis Sci 1994;71(1):1-5.
  • Raffe D. The concept of transition system. J Educ Work 2008; 21(4): 277-296.
  • Rahmani S, Mohammadi Nia M, Akbarzadeh Baghban A, Nazari MR, Ghassemi-Broumand M. Spectral transmittance of UV-blocking soft contact lenses: a comparative study.Cont Lens Anterior Eye 2014; 37(6): 451-454
  • Rocha FS, Gomes AJ, Lunardi CN, Kaliguine S, Patience GS. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy UV‐Vis. T Can J For Chem Eng 2018; 96(12): 2512-2517.
  • Bergmanson J, Söderberg P. The significance of ultraviolet radiation for eye diseases: a review with comments on the efficacy of UV-blocking contact lenses. Ophthalmic Physiol Opt 1995; 15(2): 83-91.
  • Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol 1997; 41(4): 275-313.
  • Pitts DG, Cullen AP, Hacker PD. Ocular effects of ultraviolet radiation from 295 to 365 nm. Invest Oftalmol Vis Sci 1977;16(10): 932-939.
  • Dumbleton KA, Cullen AP, Doughty MJ. Protection from acute exposure to ultraviolet radiation by ultraviolet‐absorbing RGP contact lenses. Ophthalmic Physiol Opt 1991;11(3): 232-238.
  • Walsh JE, Bergmanson JP. Does the eye benefit from wearing ultraviolet-blocking contact lenses? Eye Cont Lens 2011; 37(4): 267-272.
  • Harris MG, Chamberlain MD. Light Transmission of Hydrogel Contact Lenses. Am J Optom Physiol Opt 1978; 55(2): 93-96.
  • Bergmanson JP, Sheldon TM. Ultraviolet radiation revisited. CLAO J 1997; 23(3): 196-204.
  • Genç S, Sands J. Sun and the eye: prevention and detection of light-induced disease. Clin Dermatol 1998; 16(4): 477-485.
  • Bilici S, Kamislioglu M, Guclu EEA. A Monte Carlo simulation study on the evaluation of radiation protection properties of spectacle lens materials. Eur Phys J Plus 2023; 138(1): 1-13.
  • Bilici S, Bilici A, Külahcı F. Comparison Photon Exposure and Energy Absorption Buildup Factors of CR-39 and Trivex Optical Lenses. Turkish Journal of Science and Technology 2022; 17 (1): 23-35.
  • American National Standards Institute (ANSI), American National Standart Requirements for Non- Prescription Sunglasses and Fashion Eyewear, Standart Z80.3-1996, ANSI, New York, 1996
  • Rahmani S, Mohammadi Nia M, Akbarzadeh Baghban A, Nazari MR, Ghassemi-Broumand M. Spectral transmittance of UV-blocking soft contact lenses: a comparative study. Cont Lens Anterior Eye 2014; 37(6): 451-454.
  • Faubl H, Quinn MH. Spectra of UV-absorbing contact lenses: relative performance. Inte Cont Lens Clinic 2000; 27(3): 65-74.
  • Mutlu HK, Ekem N. Analysis of the Anti-Reflection Coated Eyeglass Used in Turkey. International Journal of Eastern Anatolia Science Engineering and Desing 2021;3(1):157-166.
  • Moore L, Ferreira JT. Ultraviolet (UV) transmittance characteristics of daily disposable and silicone hydrogel contact lenses. Cont Lens Anterio Eye 2006; 29(3):115-122.
  • Kalaycı T, Kınaytürk NK, Tunalı B. Experimental and theoretical investigations (FTIR, UV-VIS spectroscopy, HOMO-LUMO, NLO and MEP analysis) of aminothiophenol isomers. Bull Chem Soc Ethiopia 2021; 35(3): 601-614.
There are 38 citations in total.

Details

Primary Language English
Subjects Nonlinear Optics and Spectroscopy, Atomic, Molecular and Optical Physics (Other)
Journal Section TJST
Authors

Ahmet Barlık 0009-0001-5077-6240

Gonca Ateş 0000-0002-9416-342X

Project Number 1919B012210596
Publication Date September 1, 2023
Submission Date June 14, 2023
Published in Issue Year 2023 Volume: 18 Issue: 2

Cite

APA Barlık, A., & Ateş, G. (2023). Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types. Turkish Journal of Science and Technology, 18(2), 379-385. https://doi.org/10.55525/tjst.1314368
AMA Barlık A, Ateş G. Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types. TJST. September 2023;18(2):379-385. doi:10.55525/tjst.1314368
Chicago Barlık, Ahmet, and Gonca Ateş. “Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types”. Turkish Journal of Science and Technology 18, no. 2 (September 2023): 379-85. https://doi.org/10.55525/tjst.1314368.
EndNote Barlık A, Ateş G (September 1, 2023) Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types. Turkish Journal of Science and Technology 18 2 379–385.
IEEE A. Barlık and G. Ateş, “Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types”, TJST, vol. 18, no. 2, pp. 379–385, 2023, doi: 10.55525/tjst.1314368.
ISNAD Barlık, Ahmet - Ateş, Gonca. “Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types”. Turkish Journal of Science and Technology 18/2 (September 2023), 379-385. https://doi.org/10.55525/tjst.1314368.
JAMA Barlık A, Ateş G. Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types. TJST. 2023;18:379–385.
MLA Barlık, Ahmet and Gonca Ateş. “Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types”. Turkish Journal of Science and Technology, vol. 18, no. 2, 2023, pp. 379-85, doi:10.55525/tjst.1314368.
Vancouver Barlık A, Ateş G. Measurement of Ultraviolet Light Transmittance of Different Contact Lens Types. TJST. 2023;18(2):379-85.