Research Article
BibTex RIS Cite

Sentinel-2 Uydu Görüntüleri ile Yanmış Alanların Tespiti ve Analizi: İzmir Yangınları Örneği

Year 2025, Volume: 1 Issue: 1, 24 - 32, 30.09.2025

Abstract

Orman yangınları, doğal ekosistemlerde kalıcı tahribatlara yol açmakta; biyolojik çeşitliliği, toprak yapısını ve hava kalitesini olumsuz yönde etkilemektedir. Bu çalışma, 2025 yılı Temmuz ayı başında İzmir’in Çeşme, Seferihisar, Buca ve Ödemiş ilçelerinde meydana gelen dört büyük orman yangınının çevresel etkilerini uzaktan algılama teknikleriyle değerlendirmeyi amaçlamaktadır. Analizlerde, Avrupa Uzay Ajansı tarafından sağlanan Sentinel-2 uydusuna ait yüksek çözünürlüklü multispektral görüntüler kullanılmıştır. Yangın öncesi dönem için 10 Temmuz 2024, yangın sonrası için ise 5 Temmuz 2025 tarihli görüntüler tercih edilerek, mevsimsel farklılıklar ve bitki örtüsü değişkenliği en aza indirgenmiştir. Normalize Yanma Oranı (NBR) ve Fark NBR (dNBR) indeksleri hesaplanarak, yangının etkisi ve yanmış alanların mekânsal dağılımı QGIS yazılımı aracılığıyla analiz edilmiştir. Elde edilen bulgulara göre, en geniş yanmış alan Seferihisar’da 96.77 km² olarak belirlenmiş; bunu sırasıyla Çeşme (93.85 km²), Ödemiş (25.38 km²) ve Buca (25.07 km²) izlemiştir. Yangının etkisi, bölgelere göre düşükten yükseğe değişen şiddet aralıklarında sınıflandırılmıştır. Bu çalışma, uzaktan algılama ve Coğrafi Bilgi Sistemleri teknolojilerinin orman yangınları sonrası hasar tespiti ve ekosistem iyileşme süreçlerinin izlenmesinde güvenilir ve etkili araçlar olduğunu ortaya koymaktadır. Elde edilen sonuçlar, orman yönetimi ve afet planlaması açısından bilimsel temelli bir değerlendirme sunmaktadır.

References

  • Akinci, H. A., Akinci, H., and Zeybek, M. (2024). Comparison of diverse machine learning algorithms for forest fire susceptibility mapping in Antalya, Türkiye. Advances in Space Research, 74(2), 647-667. https://doi.org/10.1016/j.asr.2024.04.018
  • Atalay, H., Dervisoglu, A., and Sunar, A. F. (2024). Exploring forest fire dynamics: fire danger mapping in Antalya Region, Türkiye. ISPRS International Journal of Geo-Information, 13(3), 74. https://doi.org/10.3390/ijgi13030074
  • Chemura, A., Mutanga, O., Odindi, J., and Kutywayo, D. (2018). Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 1-11. https://doi.org/10.1016/j.isprsjprs.2018.02.004
  • Chen, G., Metz, M. R., Rizzo, D. M., and Meentemeyer, R. K. (2015). Mapping burn severity in a disease-impacted forest landscape using Landsat and MASTER imagery. International Journal of Applied Earth Observation and Geoinformation, 40, 91-99. https://doi.org/10.1016/j.jag.2015.04.005
  • Çınarer, G. (2025). Hybrid Backbone-Based Deep Learning Model for Early Detection of Forest Fire Smoke. Applied Sciences, 15(13), 7178. https://doi.org/10.3390/app15137178
  • Dereli M., (2019), Sentinel-2A uydu görüntüleri ile Giresun il merkezi için kısa dönem arazi örtüsü değişiminin belirlenmesi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(2), 361-368. https://doi.org/10.35414/akufemubid.481455
  • Dindaroglu, T., Babur, E., Yakupoglu, T., Rodrigo-Comino, J., and Cerda, A. (2021). Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire safety journal, 122, 103318. https://doi.org/10.1016/j.firesaf.2021.103318
  • Dong, H., Wu, H., Sun, P., and Ding, Y. (2022). Wildfire prediction model based on spatial and temporal characteristics: A case study of a wildfire in Portugal’s Montesinho Natural Park. Sustainability, 14(16), 10107. https://doi.org/10.3390/su141610107
  • Erzurumlu, G. S., and Yıldız, N. E. (2024). Determination of fire intensity after forest fire by remote sensing: marmaris case study. In BIO Web of Conferences, 85, 1041. https://doi.org/10.1051/bioconf/20248501041
  • Fernández-Guisuraga, J. M., Monzón-González, A., Fernández-García, V., Peña-Pérez, S. A., and Calvo, L. (2025). Estimation of Prometheus fuel types using physically based remote sensing techniques. Fire Ecology, 21(1), 30. https://doi.org/10.1186/s42408-025-00373-4
  • Frank, B., Strunk, J. L., Fried, J. S., Wolken, K., and McKenzie, S. C. (2025). Comparison of digital aerial photogrammetry, lidar, and Sentinel-2 for evaluating forest fire effects. Forest Ecology and Management, 595, 123002. https://doi.org/10.1016/j.foreco.2025.123002
  • García-Llamas, P., Suárez-Seoane, S., Fernández-Guisuraga, J. M., Fernández-García, V., Fernández-Manso, A., Quintano, C., ... and Calvo, L. (2019). Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. International Journal of Applied Earth Observation and Geoinformation, 80, 137-144. https://doi.org/10.1016/j.jag.2019.04.006
  • Genç, Ç. Ö., Küçük, Ö., Keleş, S. Ö., and Ünal, S. (2023). Burn severity evaluation in black pine forests with topographical factors using Sentinel-2 in Kastamonu, Turkiye. CERNE, 29, e-103230. https://doi.org/10.1590/01047760202329013230
  • Gougherty, A. V., Clipp, H. L., Prasad, A. M., Peters, M. P., and Matthews, S. N. (2025). Integrating disturbance to improve our understanding of range-wide patterns in tree species abundance and demography. Forest Ecology and Management, 593, 122875. https://doi.org/10.1016/j.foreco.2025.122875
  • Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International journal of wildland fire, 18(1), 116-126. https://doi.org/10.1071/WF07049
  • Kesgin Atak B., and Tonyaloğlu E., (2020). Evaluating spectral indices for estimating burned areas in the case of Izmir/Turkey. Eurasian Journal of Forest Science, 8(1), 49-59. https://doi.org/10.31195/ejejfs.657253
  • Key, C. H., and Benson, N. C. (2006). Landscape Assessment: Ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. Pp. LA1-LA51. FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT.
  • Li, R., Liu, J., Zhang, M., Huang, C., Zhao, S., Zhang, M., and Chen, L. (2025). Development and analysis of a forest fire emission inventory in China considering daily variation patterns. Environmental Pollution, 126720. https://doi.org/10.1016/j.envpol.2025.126720
  • Li, Y., Zhang, T., Ding, Y., Wadhwani, R., and Huang, X. (2024). Review and perspectives of digital twin systems for wildland fire management. Journal of Forestry Research, 36(1), 14. https://doi.org/10.1007/s11676-024-01810-x
  • Liu, C. L., Wang, Y. R., and Liu, W. Y. (2025). Multi-index remote sensing for post-fire damage assessment: accuracy, carbon loss, and conservation implications. Frontiers in Forests and Global Change, 8, 1577612. https://doi.org/10.3389/ffgc.2025.1577612
  • Lutes, D. C., Keane, R. E., Caratti, J. F., Key, C. H., Benson, N. C., Sutherland, S., and Gangi, L. J. (2006). FIREMON: Fire effects monitoring and inventory system. Gen. Tech. Rep. RMRS-GTR-164. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD., 164. https://doi.org/10.2737/RMRS-GTR-164
  • Mehmood, K., Anees, S. A., Luo, M., Akram, M., Zubair, M., Khan, K. A., and Khan, W. R. (2024). Assessing Chilgoza Pine (Pinus gerardiana) forest fire severity: Remote sensing analysis, correlations, and predictive modeling for enhanced management strategies. Trees, Forests and People, 16, 100521. https://doi.org/10.1016/j.tfp.2024.100521
  • Navarro, G., Caballero, I., Silva, G., Parra, P. C., Vázquez, Á., and Caldeira, R. (2017). Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. International Journal of Applied Earth Observation and Geoinformation, 58, 97-106. https://doi.org/10.1016/j.jag.2017.02.003
  • Özcan, Z., Caglayan, İ., Kabak, Ö., and Kılıç Gül, F. (2025). Integrated risk mapping for forest fire management using the analytical hierarchy process and ordered weighted average: a case study in southern Turkey. Natural Hazards, 121(1), 959-1001. https://doi.org/10.1007/s11069-024-06810-y
  • Öztürk, S. P., Özden, P., and Tikik, M. (2025). Climate change, extreme heat, and outdoor thermal comfort in urban areas: Case of İzmir, Turkey. Hungarian Geographical Bulletin, 74(2), 131-143. https://doi.org/10.15201/hungeobull.74.2.1
  • Pacheco, A. D. P., da Silva Junior, J. A., Ruiz-Armenteros, A. M., Henriques, R. F. F., and de Oliveira Santos, I. (2023). Analysis of spectral separability for detecting burned areas using Landsat-8 OLI/TIRS images under different biomes in Brazil and Portugal. Forests, 14(4), 663. https://doi.org/10.3390/f14040663
  • Sivrikaya, F., Günlü, A., Küçük, Ö., and Ürker, O. (2024). Forest fire risk mapping with Landsat 8 OLI images: Evaluation of the potential use of vegetation indices. Ecological Informatics, 79, 102461. https://doi.org/10.1016/j.ecoinf.2024.102461 Srivastava, A. (2025). Quantifying forest degradation rates and their impact on environmental condition in Dehradun, India. Science of The Total Environment, 992, 179987. https://doi.org/10.1016/j.scitotenv.2025.179987
  • Qarallah, B., Othman, Y. A., Al-Ajlouni, M., Alheyari, H. A., and Qoqazeh, B. A. A. (2022). Assessment of small-extent forest fires in semi-arid environment in Jordan using Sentinel-2 and Landsat sensors data. Forests, 14(1), 41. https://doi.org/10.3390/f14010041
  • Quintano C., Fernández-Manso A., Fernández-Manso O., (2018), Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. International Journal of Applied Earth Observation and Geoinformation, 64, 221-225. https://doi.org/10.1016/j.jag.2017.09.014
  • Viana-Soto, A., García, M., Aguado, I., and Salas, J. (2022). Assessing post-fire forest structure recovery by combining LiDAR data and Landsat time series in Mediterranean pine forests. International Journal of Applied Earth Observation and Geoinformation, 108, 102754. https://doi.org/10.1016/j.jag.2022.102754
  • Yılmaz, O. S., Oruç, M. S., Ateş, A. M., and Gülgen, F. (2021). Orman yangın şiddetinin Google Earth Engine ve coğrafi bilgi sistemleri kullanarak analizi: Hatay-Belen örneği. Journal of the Institute of Science and Technology, 11(2), 1519-1532. https://doi.org/10.21597/jist.817900
  • Zidane, I., Lhissou, R., Bouli, A., and Mabrouki, M. (2019). An improved algorithm for mapping burnt areas in the Mediterranean forest landscape of Morocco. Journal of Forestry Research, 30(3), 981-992. https://doi.org/10.1007/s11676-018-0669-7
  • Zerouali, B., Santos, C. A. G., Qaysi, S., da Silva, R. M., Alarifi, N., Bailek, N., ... and Youssef, Y. M. (2025). Advanced forest fire risk mapping: Combining Sentinel-2 MSI data with hybrid machine learning in Similipal Biosphere Reserve. Forest Ecology and Management, 594, 122931. https://doi.org/10.1016/j.foreco.2025.122931
  • Internet References 1-Copernicus browser, https://browser.dataspace.copernicus .eu/, (15.07.2025)

Burned Area Detection and Analysis with Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires

Year 2025, Volume: 1 Issue: 1, 24 - 32, 30.09.2025

Abstract

Wildfires cause lasting damage to natural ecosystems and adversely affect biodiversity, soil structure, and air quality. This study aims to assess the environmental impacts of four major wildfires that occurred in early July 2025 in the districts of Çeşme, Seferihisar, Buca, and Ödemiş in İzmir Province, using remote sensing techniques. High-resolution multispectral images obtained from the Sentinel-2 satellite, provided by the European Space Agency, were used in the analyses. To minimize seasonal variability and differences in vegetation cover, images dated 10 July 2024 (pre-fire) and 5 July 2025 (post-fire) were selected. The Normalized Burn Ratio (NBR) and differenced NBR (dNBR) indices were calculated to analyze the impact of the fire and the spatial distribution of burned areas using the QGIS software. According to the results, the largest burned area was identified in Seferihisar, covering 96.77 km², followed by Çeşme (93.85 km²), Ödemiş (25.38 km²), and Buca (25.07 km²). The severity of fire impact was classified across the regions with varying degrees, ranging from low to high. This study demonstrates that remote sensing and Geographic Information Systems (GIS) technologies are reliable and effective tools for post-fire damage assessment and monitoring of ecosystem recovery processes. The findings provide a scientifically grounded basis for forest management and disaster planning.

References

  • Akinci, H. A., Akinci, H., and Zeybek, M. (2024). Comparison of diverse machine learning algorithms for forest fire susceptibility mapping in Antalya, Türkiye. Advances in Space Research, 74(2), 647-667. https://doi.org/10.1016/j.asr.2024.04.018
  • Atalay, H., Dervisoglu, A., and Sunar, A. F. (2024). Exploring forest fire dynamics: fire danger mapping in Antalya Region, Türkiye. ISPRS International Journal of Geo-Information, 13(3), 74. https://doi.org/10.3390/ijgi13030074
  • Chemura, A., Mutanga, O., Odindi, J., and Kutywayo, D. (2018). Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 1-11. https://doi.org/10.1016/j.isprsjprs.2018.02.004
  • Chen, G., Metz, M. R., Rizzo, D. M., and Meentemeyer, R. K. (2015). Mapping burn severity in a disease-impacted forest landscape using Landsat and MASTER imagery. International Journal of Applied Earth Observation and Geoinformation, 40, 91-99. https://doi.org/10.1016/j.jag.2015.04.005
  • Çınarer, G. (2025). Hybrid Backbone-Based Deep Learning Model for Early Detection of Forest Fire Smoke. Applied Sciences, 15(13), 7178. https://doi.org/10.3390/app15137178
  • Dereli M., (2019), Sentinel-2A uydu görüntüleri ile Giresun il merkezi için kısa dönem arazi örtüsü değişiminin belirlenmesi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(2), 361-368. https://doi.org/10.35414/akufemubid.481455
  • Dindaroglu, T., Babur, E., Yakupoglu, T., Rodrigo-Comino, J., and Cerda, A. (2021). Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire safety journal, 122, 103318. https://doi.org/10.1016/j.firesaf.2021.103318
  • Dong, H., Wu, H., Sun, P., and Ding, Y. (2022). Wildfire prediction model based on spatial and temporal characteristics: A case study of a wildfire in Portugal’s Montesinho Natural Park. Sustainability, 14(16), 10107. https://doi.org/10.3390/su141610107
  • Erzurumlu, G. S., and Yıldız, N. E. (2024). Determination of fire intensity after forest fire by remote sensing: marmaris case study. In BIO Web of Conferences, 85, 1041. https://doi.org/10.1051/bioconf/20248501041
  • Fernández-Guisuraga, J. M., Monzón-González, A., Fernández-García, V., Peña-Pérez, S. A., and Calvo, L. (2025). Estimation of Prometheus fuel types using physically based remote sensing techniques. Fire Ecology, 21(1), 30. https://doi.org/10.1186/s42408-025-00373-4
  • Frank, B., Strunk, J. L., Fried, J. S., Wolken, K., and McKenzie, S. C. (2025). Comparison of digital aerial photogrammetry, lidar, and Sentinel-2 for evaluating forest fire effects. Forest Ecology and Management, 595, 123002. https://doi.org/10.1016/j.foreco.2025.123002
  • García-Llamas, P., Suárez-Seoane, S., Fernández-Guisuraga, J. M., Fernández-García, V., Fernández-Manso, A., Quintano, C., ... and Calvo, L. (2019). Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. International Journal of Applied Earth Observation and Geoinformation, 80, 137-144. https://doi.org/10.1016/j.jag.2019.04.006
  • Genç, Ç. Ö., Küçük, Ö., Keleş, S. Ö., and Ünal, S. (2023). Burn severity evaluation in black pine forests with topographical factors using Sentinel-2 in Kastamonu, Turkiye. CERNE, 29, e-103230. https://doi.org/10.1590/01047760202329013230
  • Gougherty, A. V., Clipp, H. L., Prasad, A. M., Peters, M. P., and Matthews, S. N. (2025). Integrating disturbance to improve our understanding of range-wide patterns in tree species abundance and demography. Forest Ecology and Management, 593, 122875. https://doi.org/10.1016/j.foreco.2025.122875
  • Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International journal of wildland fire, 18(1), 116-126. https://doi.org/10.1071/WF07049
  • Kesgin Atak B., and Tonyaloğlu E., (2020). Evaluating spectral indices for estimating burned areas in the case of Izmir/Turkey. Eurasian Journal of Forest Science, 8(1), 49-59. https://doi.org/10.31195/ejejfs.657253
  • Key, C. H., and Benson, N. C. (2006). Landscape Assessment: Ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. Pp. LA1-LA51. FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT.
  • Li, R., Liu, J., Zhang, M., Huang, C., Zhao, S., Zhang, M., and Chen, L. (2025). Development and analysis of a forest fire emission inventory in China considering daily variation patterns. Environmental Pollution, 126720. https://doi.org/10.1016/j.envpol.2025.126720
  • Li, Y., Zhang, T., Ding, Y., Wadhwani, R., and Huang, X. (2024). Review and perspectives of digital twin systems for wildland fire management. Journal of Forestry Research, 36(1), 14. https://doi.org/10.1007/s11676-024-01810-x
  • Liu, C. L., Wang, Y. R., and Liu, W. Y. (2025). Multi-index remote sensing for post-fire damage assessment: accuracy, carbon loss, and conservation implications. Frontiers in Forests and Global Change, 8, 1577612. https://doi.org/10.3389/ffgc.2025.1577612
  • Lutes, D. C., Keane, R. E., Caratti, J. F., Key, C. H., Benson, N. C., Sutherland, S., and Gangi, L. J. (2006). FIREMON: Fire effects monitoring and inventory system. Gen. Tech. Rep. RMRS-GTR-164. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD., 164. https://doi.org/10.2737/RMRS-GTR-164
  • Mehmood, K., Anees, S. A., Luo, M., Akram, M., Zubair, M., Khan, K. A., and Khan, W. R. (2024). Assessing Chilgoza Pine (Pinus gerardiana) forest fire severity: Remote sensing analysis, correlations, and predictive modeling for enhanced management strategies. Trees, Forests and People, 16, 100521. https://doi.org/10.1016/j.tfp.2024.100521
  • Navarro, G., Caballero, I., Silva, G., Parra, P. C., Vázquez, Á., and Caldeira, R. (2017). Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. International Journal of Applied Earth Observation and Geoinformation, 58, 97-106. https://doi.org/10.1016/j.jag.2017.02.003
  • Özcan, Z., Caglayan, İ., Kabak, Ö., and Kılıç Gül, F. (2025). Integrated risk mapping for forest fire management using the analytical hierarchy process and ordered weighted average: a case study in southern Turkey. Natural Hazards, 121(1), 959-1001. https://doi.org/10.1007/s11069-024-06810-y
  • Öztürk, S. P., Özden, P., and Tikik, M. (2025). Climate change, extreme heat, and outdoor thermal comfort in urban areas: Case of İzmir, Turkey. Hungarian Geographical Bulletin, 74(2), 131-143. https://doi.org/10.15201/hungeobull.74.2.1
  • Pacheco, A. D. P., da Silva Junior, J. A., Ruiz-Armenteros, A. M., Henriques, R. F. F., and de Oliveira Santos, I. (2023). Analysis of spectral separability for detecting burned areas using Landsat-8 OLI/TIRS images under different biomes in Brazil and Portugal. Forests, 14(4), 663. https://doi.org/10.3390/f14040663
  • Sivrikaya, F., Günlü, A., Küçük, Ö., and Ürker, O. (2024). Forest fire risk mapping with Landsat 8 OLI images: Evaluation of the potential use of vegetation indices. Ecological Informatics, 79, 102461. https://doi.org/10.1016/j.ecoinf.2024.102461 Srivastava, A. (2025). Quantifying forest degradation rates and their impact on environmental condition in Dehradun, India. Science of The Total Environment, 992, 179987. https://doi.org/10.1016/j.scitotenv.2025.179987
  • Qarallah, B., Othman, Y. A., Al-Ajlouni, M., Alheyari, H. A., and Qoqazeh, B. A. A. (2022). Assessment of small-extent forest fires in semi-arid environment in Jordan using Sentinel-2 and Landsat sensors data. Forests, 14(1), 41. https://doi.org/10.3390/f14010041
  • Quintano C., Fernández-Manso A., Fernández-Manso O., (2018), Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. International Journal of Applied Earth Observation and Geoinformation, 64, 221-225. https://doi.org/10.1016/j.jag.2017.09.014
  • Viana-Soto, A., García, M., Aguado, I., and Salas, J. (2022). Assessing post-fire forest structure recovery by combining LiDAR data and Landsat time series in Mediterranean pine forests. International Journal of Applied Earth Observation and Geoinformation, 108, 102754. https://doi.org/10.1016/j.jag.2022.102754
  • Yılmaz, O. S., Oruç, M. S., Ateş, A. M., and Gülgen, F. (2021). Orman yangın şiddetinin Google Earth Engine ve coğrafi bilgi sistemleri kullanarak analizi: Hatay-Belen örneği. Journal of the Institute of Science and Technology, 11(2), 1519-1532. https://doi.org/10.21597/jist.817900
  • Zidane, I., Lhissou, R., Bouli, A., and Mabrouki, M. (2019). An improved algorithm for mapping burnt areas in the Mediterranean forest landscape of Morocco. Journal of Forestry Research, 30(3), 981-992. https://doi.org/10.1007/s11676-018-0669-7
  • Zerouali, B., Santos, C. A. G., Qaysi, S., da Silva, R. M., Alarifi, N., Bailek, N., ... and Youssef, Y. M. (2025). Advanced forest fire risk mapping: Combining Sentinel-2 MSI data with hybrid machine learning in Similipal Biosphere Reserve. Forest Ecology and Management, 594, 122931. https://doi.org/10.1016/j.foreco.2025.122931
  • Internet References 1-Copernicus browser, https://browser.dataspace.copernicus .eu/, (15.07.2025)
There are 34 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Rüştü Çallı 0000-0003-4508-3316

Emirhan Özdemir 0000-0001-8306-834X

Publication Date September 30, 2025
Submission Date August 21, 2025
Acceptance Date September 15, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

APA Çallı, R., & Özdemir, E. (2025). Burned Area Detection and Analysis with Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires. Türkiye Teknik Bilimler Ve İnovasyon Dergisi, 1(1), 24-32.
AMA Çallı R, Özdemir E. Burned Area Detection and Analysis with Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires. TJTSI. September 2025;1(1):24-32.
Chicago Çallı, Rüştü, and Emirhan Özdemir. “Burned Area Detection and Analysis With Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires”. Türkiye Teknik Bilimler Ve İnovasyon Dergisi 1, no. 1 (September 2025): 24-32.
EndNote Çallı R, Özdemir E (September 1, 2025) Burned Area Detection and Analysis with Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires. Türkiye Teknik Bilimler ve İnovasyon Dergisi 1 1 24–32.
IEEE R. Çallı and E. Özdemir, “Burned Area Detection and Analysis with Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires”, TJTSI, vol. 1, no. 1, pp. 24–32, 2025.
ISNAD Çallı, Rüştü - Özdemir, Emirhan. “Burned Area Detection and Analysis With Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires”. Türkiye Teknik Bilimler ve İnovasyon Dergisi 1/1 (September2025), 24-32.
JAMA Çallı R, Özdemir E. Burned Area Detection and Analysis with Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires. TJTSI. 2025;1:24–32.
MLA Çallı, Rüştü and Emirhan Özdemir. “Burned Area Detection and Analysis With Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires”. Türkiye Teknik Bilimler Ve İnovasyon Dergisi, vol. 1, no. 1, 2025, pp. 24-32.
Vancouver Çallı R, Özdemir E. Burned Area Detection and Analysis with Sentinel-2 Satellite Imagery: A Case Study of İzmir Wildfires. TJTSI. 2025;1(1):24-32.