Research Article
BibTex RIS Cite

Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi

Year 2025, Volume: 1 Issue: 1, 44 - 50, 30.09.2025

Abstract

Bu çalışmada, Türkiye’nin güneybatısında yer alan Salda Gölü’nde 1995–2025 yılları arasındaki yüzey su alanı ve kıyı şeridi değişimleri Landsat uydu görüntüleri kullanılarak incelenmiştir. Landsat 5 TM ve Landsat 8 OLI sensörlerinden elde edilen çok zamanlı görüntüler üzerinde Normalize Edilmiş Fark Su Endeksi (NDWI) hesaplanmış, ardından eşikleme yöntemi uygulanarak yüzey su alanları belirlenmiştir. Çalışmada 6/7/1995, 1/7/2005, 13/7/2015 ve 8/7/2025 tarihlerine ait görüntüler değerlendirilmiştir. Sonuçlara göre göl yüzey alanı 1995 yılında 44,36 km², 2005 yılında 44,19 km², 2015 yılında 44,46 km² iken 2025 yılında 42,63 km²’ye gerilemiştir. Zamansal analiz, son otuz yılda gölün yüzey alanında dalgalanmalar olmakla birlikte genel eğilimin küçülme yönünde olduğunu ortaya koymaktadır. Kıyı şeridi değişimi, özellikle güneybatı ve güneydoğu kesimlerinde belirgin çekilmeler olduğunu göstermektedir. Bu bulgular, Salda Gölü’nün iklim değişikliği, yeraltı suyu kullanımı ve turizm baskısı gibi çevresel tehditlerden etkilendiğini ve düzenli olarak uzaktan algılama temelli izlemenin önemini vurgulamaktadır.

References

  • Abegeja, D. (2024). The application of satellite sensors, current state of utilization, and sources of remote sensing dataset in hydrology for water resource management. Journal of Water and Health, 22(7), 1162-1179. https://doi.org/10.2166/wh.2024.102
  • Acharya, T. D., Subedi, A., & Lee, D. H. (2018). Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 18(8), 2580. https://doi.org/10.3390/s18082580
  • Albarqouni, M. M., Yagmur, N., Bektas Balcik, F., & Sekertekin, A. (2022). Assessment of spatio-temporal changes in water surface extents and lake surface temperatures using Google Earth Engine for lakes region, Türkiye. ISPRS International Journal of Geo-Information, 11(7), 407. https://doi.org/10.3390/ijgi11070407
  • Alsdorf, D. E., Rodríguez, E., & Lettenmaier, D. P. (2007). Measuring surface water from space. Reviews of geophysics, 45(2). https://doi.org/10.1029/2006RG000197
  • Atiz, Ö. F., Alkan, T., & Durduran, S. S. (2023). Google earth engine based spatio-temporal changes of bafa lake from 1984 to 2022. International Journal of Environment and Geoinformatics, 10(3), 116-123. https://doi.org/10.30897/ijegeo.1257413
  • Balcı, N., & Demirel, C. (2018). Salda Gölünün Jeomikrobiyolojisi ve Güncel Stromatolit Oluşumunda Mikrobiyal Etkiler/Geomicrobiology of Lake Salda and Microbial Influences on Present-Day Stromatolite Formation. Yerbilimleri, 39(1), 19-40.
  • Ceylan, S., & Bulut, İ. (2019). Salda Gölü özel çevre koruma bölgesinde turizm baskısı, koruma ve sürdürülebilirlik. Türk Coğrafya Dergisi, (73), 79-89.
  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.
  • Chaturvedi, A., Pandey, B., Yadav, A. K., & Saroj, S. (2021). An overview of the potential impacts of global climate change on water resources. Water conservation in the era of global climate change, 99-120. https://doi.org/10.1016/B978-0-12-820200-5.00012-9
  • Chen, J., Wang, Y., Wang, J., Zhang, Y., Xu, Y., Yang, O., ... & Hu, Z. (2024). The performance of Landsat-8 and Landsat-9 data for water body extraction based on various water indices: A comparative analysis. Remote Sensing, 16(11), 1984. https://doi.org/10.3390/rs16111984
  • Dervisoglu, A., Yağmur, N., Fıratlı, E., Musaoğlu, N., & Tanık, A. (2022). Spatio-temporal assessment of the shrinking Lake Burdur, Turkey. International Journal of Environment and Geoinformatics, 9(2), 169-176. http://dx.doi.org/10.30897/ijegeo.1078781
  • Ghorbani, S., & Pamucar, D. (2026). Remote Sensing-Based Evaluation of Lake Area Dynamics: A Quantitative Assessment for Environmental Management in Turkey. Spectrum of Operational Research, 3(1), 352-358. https://doi.org/10.3390/ijgi11070407
  • Gökdağ, K., Pekmez, T., Akca, G., Korkmaz, M., Pacheco, J. P., Başaran Kankılıç, G., ... & Tavşanoğlu, Ü. N. (2025). Changes in microplastic-associated bacterial communities along a salinity gradient in Central Anatolian lakes of Türkiye. Hydrobiologia, 1-19. https://doi.org/10.1007/s10750-025-05844-y
  • Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., ... & Wisser, D. (2014). Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences, 111(9),3251-3256. https://doi.org/10.1073/pnas.1222475110
  • Jandaghian, Z., & Colombo, A. (2024). The role of water bodies in climate regulation: insights from recent studies on urban heat island mitigation. Buildings, 14(9), 2945. https://doi.org/10.3390/buildings14092945
  • Jia, Y. Y., Duan, H. F., & Yan, X. F. (2025). Effect of Hydro-geomorphological Environments on Surface Water Areas Extraction. Water Resources Management, 1-19. https://doi.org/10.1007/s11269-025-04212-8
  • Kaiser, J., Ön, B., Arz, H., & Akçer-Ön, S. (2016). Sedimentary lipid biomarkers in the magnesium rich and highly alkaline Lake Salda (south-western Anatolia). Journal of Limnology, 75(3). https://doi.org/10.4081/jlimnol.2016.1337
  • Kaya, Y., Balık Şanlı, F., & Abdikan, S. (2023). Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Environmental science and pollution research international, 30(55), 117729-117747. https://doi.org/10.1007/s11356-023-30369-z
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714
  • Nagaraj, R., & Kumar, L. S. (2024). Extraction of surface water bodies using optical remote sensing images: A review. Earth Science Informatics, 17(2), 893-956. https://doi.org/10.1007/s12145-023-01196-0
  • Narin, O. G., Lindenbergh, R., & Abdikan, S. (2025). Temporal Analysis of Reservoirs, Lakes, and Rivers in the Euphrates–Tigris Basin from Multi-Sensor Data Between 2018 and 2022. Remote Sensing, 17(16), 2913. https://doi.org/10.3390/rs17162913
  • Odhiambo, G. O. (2017). Water scarcity in the Arabian Peninsula and socio-economic implications. Applied Water Science, 7(5), 2479-2492. https://doi.org/10.1007/s13201-016-0440-1
  • Purnam, K. K., Prasad, A. D., & Ganasala, P. (2024). Water indices for surface water extraction using geospatial techniques: a brief review. Sustainable Water Resources Management, 10(2), 70. https://doi.org/10.1007/s40899-024-01035-0
  • Roy, D. P., Wulder, M. A., Loveland, T. R., Ce, W., Allen, R. G., Anderson, M. C., ... & Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote sensing of Environment, 145, 154-172. https://doi.org/10.1016/j.rse.2014.02.001
  • Sekertekin, A. (2021). A survey on global thresholding methods for mapping open water body using Sentinel-2 satellite imagery and normalized difference water index. Archives of Computational Methods in Engineering, 28(3), 1335-1347. http://dx.doi.org/10.1007/s11831-020-09416-2
  • Sekertekin, A., Cicekli, S. Y., & Arslan, N. (2018, October). Index-based identification of surface water resources using Sentinel-2 satellite imagery. In 2018 2nd international symposium on multidisciplinary studies and innovative technologies (ISMSIT) (pp. 1-5). IEEE. https://doi.org/10.1109/ISMSIT.2018.8567062
  • Shirokova, L. S., Mavromatis, V., Bundeleva, I. A., Pokrovsky, O. S., Bénézeth, P., Gérard, E., ... & Oelkers, E. H. (2013). Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquatic Geochemistry, 19(1), 1-24. https://doi.org/10.1007/s10498-012-9174-3
  • Soydan, O. (2025). Salda Lake's Shrinking Waters: A 20-Year Satellite Analysis. Eurasian Journal of Agricultural Research, 9(1), 118-129.
  • Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., ... & Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and oceanography, 54(6part2), 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
  • Varol, S., Davraz, A., Şener, Ş., Şener, E., Aksever, F., Kırkan, B., & Tokgözlü, A. (2021). Assessment of groundwater quality and usability of Salda Lake Basin (Burdur/Turkey) and health risk related to arsenic pollution. Journal of Environmental Health Science and Engineering, 19(1), 681-706. https://doi.org/10.1007/s40201-021-00638-5
  • Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., ... & Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote sensing of environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179
  • İnternet Kaynakları
  • 1-Salda Gölü Doğal Sit Alanı, https://tvk.csb.gov.tr/salda-golu-dogal-sit-alani-haber-231661, (27.08.2025)

Analysis of Surface Water Area and Shoreline Changes in Lake Salda Between 1995 and 2025 Using Satellite Data

Year 2025, Volume: 1 Issue: 1, 44 - 50, 30.09.2025

Abstract

This study investigates the changes in surface water area and shoreline of Lake Salda, located in southwestern Türkiye, between 1995 and 2025 using Landsat satellite imagery. Multitemporal images acquired from the Landsat 5 TM and Landsat 8 OLI sensors were processed to derive the Normalized Difference Water Index (NDWI), and a thresholding method was applied to delineate surface water bodies. Four acquisition dates (July 6, 1995; July 1, 2005; July 13, 2015; and July 8, 2025) were analyzed to ensure seasonal consistency. The results indicate that the lake’s surface area decreased from 44.36 km² in 1995, 44.19 km² in 2005, and 44.46 km² in 2015 to 42.63 km² in 2025. Although short-term fluctuations were observed, the long-term trend points to a gradual shrinkage of the lake. Shoreline change maps reveal more pronounced retreat in the southwestern and southeastern sections compared to the northern parts. These findings highlight the impacts of climate change, groundwater extraction, and tourism pressure on Lake Salda, emphasizing the necessity of regular remote sensing-based monitoring for sustainable management.

References

  • Abegeja, D. (2024). The application of satellite sensors, current state of utilization, and sources of remote sensing dataset in hydrology for water resource management. Journal of Water and Health, 22(7), 1162-1179. https://doi.org/10.2166/wh.2024.102
  • Acharya, T. D., Subedi, A., & Lee, D. H. (2018). Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 18(8), 2580. https://doi.org/10.3390/s18082580
  • Albarqouni, M. M., Yagmur, N., Bektas Balcik, F., & Sekertekin, A. (2022). Assessment of spatio-temporal changes in water surface extents and lake surface temperatures using Google Earth Engine for lakes region, Türkiye. ISPRS International Journal of Geo-Information, 11(7), 407. https://doi.org/10.3390/ijgi11070407
  • Alsdorf, D. E., Rodríguez, E., & Lettenmaier, D. P. (2007). Measuring surface water from space. Reviews of geophysics, 45(2). https://doi.org/10.1029/2006RG000197
  • Atiz, Ö. F., Alkan, T., & Durduran, S. S. (2023). Google earth engine based spatio-temporal changes of bafa lake from 1984 to 2022. International Journal of Environment and Geoinformatics, 10(3), 116-123. https://doi.org/10.30897/ijegeo.1257413
  • Balcı, N., & Demirel, C. (2018). Salda Gölünün Jeomikrobiyolojisi ve Güncel Stromatolit Oluşumunda Mikrobiyal Etkiler/Geomicrobiology of Lake Salda and Microbial Influences on Present-Day Stromatolite Formation. Yerbilimleri, 39(1), 19-40.
  • Ceylan, S., & Bulut, İ. (2019). Salda Gölü özel çevre koruma bölgesinde turizm baskısı, koruma ve sürdürülebilirlik. Türk Coğrafya Dergisi, (73), 79-89.
  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.
  • Chaturvedi, A., Pandey, B., Yadav, A. K., & Saroj, S. (2021). An overview of the potential impacts of global climate change on water resources. Water conservation in the era of global climate change, 99-120. https://doi.org/10.1016/B978-0-12-820200-5.00012-9
  • Chen, J., Wang, Y., Wang, J., Zhang, Y., Xu, Y., Yang, O., ... & Hu, Z. (2024). The performance of Landsat-8 and Landsat-9 data for water body extraction based on various water indices: A comparative analysis. Remote Sensing, 16(11), 1984. https://doi.org/10.3390/rs16111984
  • Dervisoglu, A., Yağmur, N., Fıratlı, E., Musaoğlu, N., & Tanık, A. (2022). Spatio-temporal assessment of the shrinking Lake Burdur, Turkey. International Journal of Environment and Geoinformatics, 9(2), 169-176. http://dx.doi.org/10.30897/ijegeo.1078781
  • Ghorbani, S., & Pamucar, D. (2026). Remote Sensing-Based Evaluation of Lake Area Dynamics: A Quantitative Assessment for Environmental Management in Turkey. Spectrum of Operational Research, 3(1), 352-358. https://doi.org/10.3390/ijgi11070407
  • Gökdağ, K., Pekmez, T., Akca, G., Korkmaz, M., Pacheco, J. P., Başaran Kankılıç, G., ... & Tavşanoğlu, Ü. N. (2025). Changes in microplastic-associated bacterial communities along a salinity gradient in Central Anatolian lakes of Türkiye. Hydrobiologia, 1-19. https://doi.org/10.1007/s10750-025-05844-y
  • Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., ... & Wisser, D. (2014). Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences, 111(9),3251-3256. https://doi.org/10.1073/pnas.1222475110
  • Jandaghian, Z., & Colombo, A. (2024). The role of water bodies in climate regulation: insights from recent studies on urban heat island mitigation. Buildings, 14(9), 2945. https://doi.org/10.3390/buildings14092945
  • Jia, Y. Y., Duan, H. F., & Yan, X. F. (2025). Effect of Hydro-geomorphological Environments on Surface Water Areas Extraction. Water Resources Management, 1-19. https://doi.org/10.1007/s11269-025-04212-8
  • Kaiser, J., Ön, B., Arz, H., & Akçer-Ön, S. (2016). Sedimentary lipid biomarkers in the magnesium rich and highly alkaline Lake Salda (south-western Anatolia). Journal of Limnology, 75(3). https://doi.org/10.4081/jlimnol.2016.1337
  • Kaya, Y., Balık Şanlı, F., & Abdikan, S. (2023). Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Environmental science and pollution research international, 30(55), 117729-117747. https://doi.org/10.1007/s11356-023-30369-z
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714
  • Nagaraj, R., & Kumar, L. S. (2024). Extraction of surface water bodies using optical remote sensing images: A review. Earth Science Informatics, 17(2), 893-956. https://doi.org/10.1007/s12145-023-01196-0
  • Narin, O. G., Lindenbergh, R., & Abdikan, S. (2025). Temporal Analysis of Reservoirs, Lakes, and Rivers in the Euphrates–Tigris Basin from Multi-Sensor Data Between 2018 and 2022. Remote Sensing, 17(16), 2913. https://doi.org/10.3390/rs17162913
  • Odhiambo, G. O. (2017). Water scarcity in the Arabian Peninsula and socio-economic implications. Applied Water Science, 7(5), 2479-2492. https://doi.org/10.1007/s13201-016-0440-1
  • Purnam, K. K., Prasad, A. D., & Ganasala, P. (2024). Water indices for surface water extraction using geospatial techniques: a brief review. Sustainable Water Resources Management, 10(2), 70. https://doi.org/10.1007/s40899-024-01035-0
  • Roy, D. P., Wulder, M. A., Loveland, T. R., Ce, W., Allen, R. G., Anderson, M. C., ... & Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote sensing of Environment, 145, 154-172. https://doi.org/10.1016/j.rse.2014.02.001
  • Sekertekin, A. (2021). A survey on global thresholding methods for mapping open water body using Sentinel-2 satellite imagery and normalized difference water index. Archives of Computational Methods in Engineering, 28(3), 1335-1347. http://dx.doi.org/10.1007/s11831-020-09416-2
  • Sekertekin, A., Cicekli, S. Y., & Arslan, N. (2018, October). Index-based identification of surface water resources using Sentinel-2 satellite imagery. In 2018 2nd international symposium on multidisciplinary studies and innovative technologies (ISMSIT) (pp. 1-5). IEEE. https://doi.org/10.1109/ISMSIT.2018.8567062
  • Shirokova, L. S., Mavromatis, V., Bundeleva, I. A., Pokrovsky, O. S., Bénézeth, P., Gérard, E., ... & Oelkers, E. H. (2013). Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquatic Geochemistry, 19(1), 1-24. https://doi.org/10.1007/s10498-012-9174-3
  • Soydan, O. (2025). Salda Lake's Shrinking Waters: A 20-Year Satellite Analysis. Eurasian Journal of Agricultural Research, 9(1), 118-129.
  • Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., ... & Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and oceanography, 54(6part2), 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
  • Varol, S., Davraz, A., Şener, Ş., Şener, E., Aksever, F., Kırkan, B., & Tokgözlü, A. (2021). Assessment of groundwater quality and usability of Salda Lake Basin (Burdur/Turkey) and health risk related to arsenic pollution. Journal of Environmental Health Science and Engineering, 19(1), 681-706. https://doi.org/10.1007/s40201-021-00638-5
  • Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., ... & Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote sensing of environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179
  • İnternet Kaynakları
  • 1-Salda Gölü Doğal Sit Alanı, https://tvk.csb.gov.tr/salda-golu-dogal-sit-alani-haber-231661, (27.08.2025)
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Mitat Can Yıldız 0000-0003-1090-0726

Publication Date September 30, 2025
Submission Date September 13, 2025
Acceptance Date September 28, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

APA Yıldız, M. C. (2025). Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi. Türkiye Teknik Bilimler Ve İnovasyon Dergisi, 1(1), 44-50.
AMA Yıldız MC. Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi. TJTSI. September 2025;1(1):44-50.
Chicago Yıldız, Mitat Can. “Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı Ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi”. Türkiye Teknik Bilimler Ve İnovasyon Dergisi 1, no. 1 (September 2025): 44-50.
EndNote Yıldız MC (September 1, 2025) Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi. Türkiye Teknik Bilimler ve İnovasyon Dergisi 1 1 44–50.
IEEE M. C. Yıldız, “Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi”, TJTSI, vol. 1, no. 1, pp. 44–50, 2025.
ISNAD Yıldız, Mitat Can. “Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı Ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi”. Türkiye Teknik Bilimler ve İnovasyon Dergisi 1/1 (September2025), 44-50.
JAMA Yıldız MC. Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi. TJTSI. 2025;1:44–50.
MLA Yıldız, Mitat Can. “Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı Ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi”. Türkiye Teknik Bilimler Ve İnovasyon Dergisi, vol. 1, no. 1, 2025, pp. 44-50.
Vancouver Yıldız MC. Salda Gölü’nde 1995–2025 Yılları Arasında Yüzey Su Alanı ve Kıyı Şeridi Değişimlerinin Uydu Verileri Kullanılarak Analizi. TJTSI. 2025;1(1):44-50.