Cevahir, F. Y. E. (2019). Hydrologic sensitivity of a critical Turkish watershed to inform water resource management in an altered climate (OCLC Number: 1243629939) [Master’s Thesis, Washington State University]. https://searchit.libraries.wsu.edu/permalink/01ALLIANCE_WSU/1rq08rk/alma9990054979 1201842
Adam, J. C., Hamlet, A. F., & Lettenmaier, D. P. (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes, 23(7), 962–972. https://doi.org/10.1002/hyp.7201
Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303–309. https://doi.org/10.1038/nature04141
Beaudoing, H., & Rodell, M. (2020). NASA/GSFC/HSL,(2020). GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2. 1. Greenbelt, Maryland, USA, Goddard Earth Sci. Data Inf. Serv. Cent.(GES DISC), 10. https://doi.org/10.5067/SXAVCZFAQLNO
Bormann, K. J., Brown, R. D., Derksen, C., & Painter, T. H. (2018). Estimating snow-cover trends from space. Nature Climate Change, 8(11), 924–928. https://doi.org/10.1038/s41558-018-0318-3
Déry, S. J., Sheffield, J., & Wood, E. F. (2005). Connectivity between Eurasian snow cover extent and Canadian snow water equivalent and river discharge. Journal of Geophysical Research: Atmospheres, 110(D23), 1-14. https://doi.org/10.1029/2005JD006173
Dudley, R. W., Hodgkins, G. A., McHale, M. R., Kolian, M. J., & Renard, B. (2017). Trends in snowmelt-related streamflow timing in the conterminous United States. Journal of Hydrology, 547, 208–221. https://doi.org/10.1016/j.jhydrol.2017.01.051
NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). (2020). GES DISC Data Release: New and Reprocessed GLDAS Version 2 Data Products Released [Data set]. NASA Earthdata. Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381
Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., & Coşkun, M. (2017). Climate Change Projections for Turkey: Three Models and Two Scenarios. Turkish Journal of Water Science and Management, 1(1), 22–43. https://doi.org/10.31807/tjwsm.297183
Climate Change Impacts on Water Resources Project, Report by Ministry of Agriculture and Forestry of Türkiye, General Directorate of Water Management Department” (2016), http://iklim.tarimorman.gov.tr/Dokumanlar.aspx (The project reports can also be accessed by a written official request to the Department.)
Jain, S. K., Goswami, A., & Saraf, A. K. (2010). Assessment of Snowmelt Runoff Using Remote Sensing and Effect of Climate Change on Runoff. Water Resources Management, 24(9), 1763– 1777. https://doi.org/10.1007/s11269-009-9523-1
Kang, D. H., Shi, X., Gao, H., & Déry, S. J. (2014). On the Changing Contribution of Snow to the Hydrology of the Fraser River Basin, Canada. Journal of Hydrometeorology, 15(4), 1344–1365. https://doi.org/10.1175/JHM-D-13-0120.1
Kayastha, R. B., & Kayastha, R. (2020). Glacio-Hydrological Degree-Day Model (GDM) Useful for the Himalayan River Basins. In A. P. Dimri, B. Bookhagen, M. Stoffel, & T. Yasunari (Eds.), Himalayan Weather and Climate and their Impact on the Environment (pp. 379–398). Springer International Publishing. https://doi.org/10.1007/978-3-030-29684-1_19
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2011). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Sturm, M., Goldstein, M. A., & Parr, C. (2017). Water and life from snow: A trillion dollar science question. Water Resources Research, 53(5), 3534–3544. https://doi.org/10.1002/2017WR020840
Tan, A., Adam, J.C., Lettenmaier, D.P., 2011. Change in spring snowmelt timing in Eurasian Arctic rivers. Journal of Geophysical Research: Atmospheres 116. https://doi.org/10.1029/2010JD014337
Uzun, S., Tanir, T., Coelho, G. de A., Souza de Lima, A. de, Cassalho, F., & Ferreira, C. M. (2021). Changes in snowmelt runoff timing in the contiguous United States. Hydrological Processes, 35(11), e14430. https://doi.org/10.1002/hyp.14430
On the Changing Snow Contribution to Runoff Across Turkiye
Contribution of snowfall to runoff is especially important in snow-dominated regions where hydrological processes are mostly influenced by snowmelt. In this study, the contribution of snowfall
to runoff in Türkiye for the last 21 years was examined in the light of the hydrological model results globally provided by National Aeronautics and Space Administration. The model outputs of the
Global Land Data Assimilation System v2.1, in which observed and remote sensing products are assimilated, were used in this study. The snow dominant regions of Türkiye for the last 21 years were
revealed, and the ratio of the spatially averaged maximum snow water equivalent to runoff (Rsr) values, an indicator showing snowmelt contribution to runoff, were calculated for a period of 11-years from 2000 to 2021 (period 1:2000-2010, period 2: 2011-2021). These Rsr values were compared across Türkiye to see whether they were decreasing or increasing in the snow-dominated regions.
According to the results of the analysis, Rsr values are decreasing in all snow-dominated regions. Rsr values decreased by up to 50 percent in the last 11-year period in the regions receiving high snowfall, such as the upper Euphrates basin.
Cevahir, F. Y. E. (2019). Hydrologic sensitivity of a critical Turkish watershed to inform water resource management in an altered climate (OCLC Number: 1243629939) [Master’s Thesis, Washington State University]. https://searchit.libraries.wsu.edu/permalink/01ALLIANCE_WSU/1rq08rk/alma9990054979 1201842
Adam, J. C., Hamlet, A. F., & Lettenmaier, D. P. (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes, 23(7), 962–972. https://doi.org/10.1002/hyp.7201
Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303–309. https://doi.org/10.1038/nature04141
Beaudoing, H., & Rodell, M. (2020). NASA/GSFC/HSL,(2020). GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2. 1. Greenbelt, Maryland, USA, Goddard Earth Sci. Data Inf. Serv. Cent.(GES DISC), 10. https://doi.org/10.5067/SXAVCZFAQLNO
Bormann, K. J., Brown, R. D., Derksen, C., & Painter, T. H. (2018). Estimating snow-cover trends from space. Nature Climate Change, 8(11), 924–928. https://doi.org/10.1038/s41558-018-0318-3
Déry, S. J., Sheffield, J., & Wood, E. F. (2005). Connectivity between Eurasian snow cover extent and Canadian snow water equivalent and river discharge. Journal of Geophysical Research: Atmospheres, 110(D23), 1-14. https://doi.org/10.1029/2005JD006173
Dudley, R. W., Hodgkins, G. A., McHale, M. R., Kolian, M. J., & Renard, B. (2017). Trends in snowmelt-related streamflow timing in the conterminous United States. Journal of Hydrology, 547, 208–221. https://doi.org/10.1016/j.jhydrol.2017.01.051
NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). (2020). GES DISC Data Release: New and Reprocessed GLDAS Version 2 Data Products Released [Data set]. NASA Earthdata. Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381
Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., & Coşkun, M. (2017). Climate Change Projections for Turkey: Three Models and Two Scenarios. Turkish Journal of Water Science and Management, 1(1), 22–43. https://doi.org/10.31807/tjwsm.297183
Climate Change Impacts on Water Resources Project, Report by Ministry of Agriculture and Forestry of Türkiye, General Directorate of Water Management Department” (2016), http://iklim.tarimorman.gov.tr/Dokumanlar.aspx (The project reports can also be accessed by a written official request to the Department.)
Jain, S. K., Goswami, A., & Saraf, A. K. (2010). Assessment of Snowmelt Runoff Using Remote Sensing and Effect of Climate Change on Runoff. Water Resources Management, 24(9), 1763– 1777. https://doi.org/10.1007/s11269-009-9523-1
Kang, D. H., Shi, X., Gao, H., & Déry, S. J. (2014). On the Changing Contribution of Snow to the Hydrology of the Fraser River Basin, Canada. Journal of Hydrometeorology, 15(4), 1344–1365. https://doi.org/10.1175/JHM-D-13-0120.1
Kayastha, R. B., & Kayastha, R. (2020). Glacio-Hydrological Degree-Day Model (GDM) Useful for the Himalayan River Basins. In A. P. Dimri, B. Bookhagen, M. Stoffel, & T. Yasunari (Eds.), Himalayan Weather and Climate and their Impact on the Environment (pp. 379–398). Springer International Publishing. https://doi.org/10.1007/978-3-030-29684-1_19
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2011). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Sturm, M., Goldstein, M. A., & Parr, C. (2017). Water and life from snow: A trillion dollar science question. Water Resources Research, 53(5), 3534–3544. https://doi.org/10.1002/2017WR020840
Tan, A., Adam, J.C., Lettenmaier, D.P., 2011. Change in spring snowmelt timing in Eurasian Arctic rivers. Journal of Geophysical Research: Atmospheres 116. https://doi.org/10.1029/2010JD014337
Uzun, S., Tanir, T., Coelho, G. de A., Souza de Lima, A. de, Cassalho, F., & Ferreira, C. M. (2021). Changes in snowmelt runoff timing in the contiguous United States. Hydrological Processes, 35(11), e14430. https://doi.org/10.1002/hyp.14430
Cevahir, F. Y. E., & Duygu, M. B. (2023). On the Changing Snow Contribution to Runoff Across Turkiye. Turkish Journal of Water Science and Management, 7(1), 105-118. https://doi.org/10.31807/tjwsm.1088444