Research Article
BibTex RIS Cite

Flood Social Vulnerability Assessment: A case study of Türkiye

Year 2022, Volume: 6 Issue: 2, 237 - 259, 25.07.2022
https://doi.org/10.31807/tjwsm.1089403

Abstract

Among all natural disasters, floods are the most frequent and destructive one by far. Assessment of drivers and quantification of flood risk are crucial for humanity preventing its massive consequences. It is required to combine social and biophysical components of the flood risk so that it is comprehensively evaluated. In this study, Social Vulnerability Index, which assesses the adaptability and sensitivity of population to any hazard, were applied in Türkiye. 9 different parameters were used as a vulnerability indicator based on literature review and data availability. 14 cities were identified as highly and very highly vulnerable. Flood frequencies were determined by numbers of flood events occurred among 1960-2021 in each city. Only 3 of 14 cities (Ordu, Kütahya and Sinop) had the highest Flood Social Vulnerability levels as a result of the combination with Flood Frequency Index. The Flood Social Vulnerability Index analysis showed that only the social dimension of the risk is not enough to evaluate risk itself since the biophysical dimension defines the probability of any disaster to happen. The method utilized in this study can be an effective tool for decision-makers to allocate aids to improve flood preparedness over the country.

References

  • Abson, D. J., Dougill, A. J., & Stringer, L. C. (2012). Using Principal Component Analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Applied Geography, 35(1–2), 515–524. https://doi.org/10.1016/j.apgeog.2012.08.004
  • Akbulut, N. (Emir), Bayarı, S., Akbulut, A., Özyurt, N. N., & Sahin, Y. (2022). Rivers of Turkey. In Rivers of Europe (pp. 851–880). https://doi.org/10.1016/B978-0-08-102612-0.00017-1
  • Bolin, R. C., & Bolton, P. (1986). Race, Religion, and Ethnicity in Disaster Recovery. Program on Environment and Behavior Monograph, 282.
  • Chakraborty, L., Rus, H., Henstra, D., Thistlethwaite, J., & Scott, D. (2020). A place-based socioeconomic status index: Measuring social vulnerability to flood hazards in the context of environmental justice. International Journal of Disaster Risk Reduction, 43(July 2019), 101394. https://doi.org/10.1016/j.ijdrr.2019.101394
  • Chen, W., Wang, X., Deng, S., Liu, C., Xie, H., & Zhu, Y. (2019). Integrated urban flood vulnerability assessment using local spatial dependence-based probabilistic approach. Journal of Hydrology, 575(September 2018), 454–469. https://doi.org/10.1016/j.jhydrol.2019.05.043
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards n. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
  • Cutter, S. L., & Finch, C. (2018). Temporal and spatial changes in social vulnerability to natural hazards. Planning for Climate Change: A Reader in Green Infrastructure and Sustainable Design for Resilient Cities, 105(7), 129–137. https://doi.org/10.4324/9781351201117-16
  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2012). Revealing the vulnerability of people and places: A case study of Georgetown county, South carolina. Hazards, Vulnerability and Environmental Justice, 90(4), 83–114. https://doi.org/10.4324/9781849771542
  • Díez-Herrero, A., & Garrote, J. (2020). Flood Risk Assessments: Applications and Uncertainties. Water, 12(8). https://doi.org/10.3390/w12082096
  • Duzgun, H. S. B., Yucemen, M. S., Kalaycioglu, H. S., Celik, K., Kemec, S., Ertugay, K., & Deniz, A. (2011). An integrated earthquake vulnerability assessment framework for urban areas. Natural Hazards, 59(2), 917–947. https://doi.org/10.1007/s11069-011-9808-6
  • Fekete, A. (2009). Validation of a social vulnerability index in context to river-floods in Germany. Natural Hazards and Earth System Science, 9(2), 393–403. https://doi.org/10.5194/nhess-9-393-2009
  • Fernandez, P., Mourato, S., & Moreira, M. (2016). Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia. Geomatics, Natural Hazards and Risk, 7(4), 1367–1389. https://doi.org/10.1080/19475705.2015.1052021
  • Ganguly, K. K., Nahar, N., & Hossain, B. M. (2019). A machine learning-based prediction and analysis of flood affected households: A case study of floods in Bangladesh. International Journal of Disaster Risk Reduction, 34, 283–294. https://doi.org/10.1016/j.ijdrr.2018.12.002
  • Gómez Murciano, M., Liu, Y., Ünal, V., & Sánchez LIzaso, J. L. (2021). Comparative analysis of the social vulnerability assessment to climate change applied to fisheries from Spain and Turkey. Scientific Reports, 11(1), 13949. https://doi.org/10.1038/s41598-021-93165-0
  • Gu, H., Du, S., Liao, B., Wen, J., Wang, C., Chen, R., & Chen, B. (2018). A hierarchical pattern of urban social vulnerability in Shanghai, China and its implications for risk management. Sustainable Cities and Society, 41, 170–179. https://doi.org/10.1016/j.scs.2018.05.047
  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., … Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9). https://doi.org/10.1038/nclimate1911
  • Holand, I. S., Lujala, P., & Rød, J. K. (2011). Social vulnerability assessment for Norway: A quantitative approach. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 65(1), 1–17. https://doi.org/10.1080/00291951.2010.550167
  • Hoque, M. A. A., Tasfia, S., Ahmed, N., & Pradhan, B. (2019). Assessing spatial flood vulnerability at kalapara upazila in Bangladesh using an analytic hierarchy process. Sensors (Switzerland), Vol. 19. https://doi.org/10.3390/s19061302
  • Karagiorgos, K., Thaler, T., Heiser, M., Hübl, J., & Fuchs, S. (2016). Integrated flash flood vulnerability assessment: Insights from East Attica, Greece. Journal of Hydrology, Vol. 541, pp. 553–562. https://doi.org/10.1016/j.jhydrol.2016.02.052
  • Khajehei, S., Ahmadalipour, A., Shao, W., & Moradkhani, H. (2020). OPEN A Place-based Assessment of Flash Flood Hazard and Vulnerability in the Contiguous United States. 1–12. https://doi.org/10.1038/s41598-019-57349-z
  • Kong, X., Hu, C., & Duan, Z. (2017). Principal component analysis networks and algorithms. In Principal Component Analysis Networks and Algorithms. https://doi.org/10.1007/978-981-10-2915-8
  • Lugeri, N., Kundzewicz, Z. W., Genovese, E., Hochrainer, S., & Radziejewski, M. (2010). River flood risk and adaptation in Europe—assessment of the present status. Mitigation and Adaptation Strategies for Global Change, 15(7). https://doi.org/10.1007/s11027-009-9211-8
  • Mansur, A. V., Brondízio, E. S., Roy, S., Hetrick, S., Vogt, N. D., & Newton, A. (2016). An assessment of urban vulnerability in the Amazon Delta and Estuary: a multi-criterion index of flood exposure, socio-economic conditions and infrastructure. Sustainability Science, 11(4), 625–643. https://doi.org/10.1007/s11625-016-0355-7
  • Masia, S., Sušnik, J., Marras, S., Mereu, S., Spano, D., & Trabucco, A. (2018). Assessment of irrigated agriculture vulnerability under climate change in Southern Italy. Water (Switzerland), 10(2), 1–19. https://doi.org/10.3390/w10020209
  • Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103–117. https://doi.org/10.1016/j.geoforum.2017.09.008
  • Medina, N., Abebe, Y. A., Sanchez, A., & Vojinovic, Z. (2020). Assessing Socioeconomic Vulnerability after a Hurricane : A Combined Use of an Index-Based approach and Principal Components Analysis. Sustainability (Switzerland), 12. https://doi.org/10.3390/su12041452
  • Mohanty, M. P., H, V., Yadav, V., Ghosh, S., Rao, G. S., & Karmakar, S. (2020). A new bivariate risk classifier for flood management considering hazard and socio-economic dimensions. Journal of Environmental Management, 255(October 2019), 109733. https://doi.org/10.1016/j.jenvman.2019.109733
  • Monterroso, A., Conde, C., Gay, C., Gómez, D., & López, J. (2014). Two methods to assess vulnerability to climate change in the Mexican agricultural sector. Mitigation and Adaptation Strategies for Global Change, 19(4), 445–461. https://doi.org/10.1007/s11027-012-9442-y
  • Moreira, L. L., de Brito, M. M., & Kobiyama, M. (2021). Effects of Different Normalization, Aggregation, and Classification Methods on the Construction of Flood Vulnerability Indexes. Water, 13(1), 98. https://doi.org/10.3390/w13010098
  • Munyai, R. B., Musyoki, A., & Nethengwe, N. S. (2019). An assessment of flood vulnerability and adaptation: A case study of Hamutsha-Muungamunwe village, Makhado municipality. Jamba: Journal of Disaster Risk Studies, Vol. 11. https://doi.org/10.4102/jamba.v11i2.692
  • Nasiri, H., Mohd Yusof, M. J., & Mohammad Ali, T. A. (2016). An overview to flood vulnerability assessment methods. Sustainable Water Resources Management, 2(3), 331–336. https://doi.org/10.1007/s40899-016-0051-x
  • OECD. (2022). Selected indicators for Turkey. Retrieved March 17, 2022, from OECD website: https://data.oecd.org/turkey.htm
  • Ranger, N., Hallegatte, S., Bhattacharya, S., Bachu, M., Priya, S., Dhore, K., … Corfee-Morlot, J. (2011). An assessment of the potential impact of climate change on flood risk in Mumbai. Climatic Change, 104(1), 139–167. https://doi.org/10.1007/s10584-010-9979-2
  • Reyes-Acevedo, M. A., Flacke, J., & Brussel, M. (2011). Urban flash flood vulnerability : spatial assessment and adaptation - a case study in Istanbul, Turkey. Environmental Science.
  • Roder, G., Sofia, G., Wu, Z., & Tarolli, P. (2017). Assessment of Social Vulnerability to floods in the floodplain of northern Italy. Weather, Climate, and Society, 9(4), 717–737. https://doi.org/10.1175/WCAS-D-16-0090.1
  • Roncancio, D. J., & Nardocci, A. C. (2016). Social vulnerability to natural hazards in São Paulo, Brazil. Natural Hazards, 84(2), 1367–1383. https://doi.org/10.1007/s11069-016-2491-x
  • Rufat, S., & Botzen, W. J. W. (2022). Drivers and dimensions of flood risk perceptions: Revealing an implicit selection bias and lessons for communication policies. Global Environmental Change, 73, 102465. https://doi.org/10.1016/j.gloenvcha.2022.102465
  • Santos, P. P., Tavares, A. O., Freire, P., & Rilo, A. (2018). Estuarine flooding in urban areas: enhancing vulnerability assessment. Natural Hazards, 93, 77–95. https://doi.org/10.1007/s11069-017-3067-0
  • St. Cyr, J. F. (2005). At Risk: Natural Hazards, People’s Vulnerability, and Disasters. Journal of Homeland Security and Emergency Management, 2(2). https://doi.org/10.2202/1547-7355.1131
  • Taghavi, M., Hasirchian, M., Han, M., Taghavi, J., & Pirzadeh, S. (2011). Basin Characteristics Impact on Flood Risk Management: A Case Study of the Babol River in Iran . The 4th IWA-ASPIRE 2011.
  • Tanir, T., de Lima, A. de S., de A. Coelho, G., Uzun, S., Cassalho, F., & Ferreira, C. M. (2021). Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed. Natural Hazards, 108(1). https://doi.org/10.1007/s11069-021-04677-x
  • Tanir, T., Sumi, S. J., de Lima, A. de S., de A. Coelho, G., Uzun, S., Cassalho, F., & Ferreira, C. M. (2021). Multi-scale comparison of urban socio-economic vulnerability in the Washington, DC metropolitan region resulting from compound flooding. International Journal of Disaster Risk Reduction, 61. https://doi.org/10.1016/j.ijdrr.2021.102362
  • Tascón-González, L., Ferrer-Julià, M., Ruiz, M., & García-Meléndez, E. (2020). Social Vulnerability Assessment for Flood Risk Analysis. Water, 12(2). https://doi.org/10.3390/w12020558
  • Tate, E., Rahman, M. A., Emrich, C. T., & Sampson, C. C. (2021). Flood exposure and social vulnerability in the United States. Natural Hazards, 106(1). https://doi.org/10.1007/s11069-020-04470-2
  • TUIK. (2022). TUIK: Geographic Statistics Portal. Retrieved March 17, 2022, from Turkish Statistical Service website: https://cip.tuik.gov.tr/
  • Türkeş, M. (2017). Drought Vulnerability and Risk Analysis of Turkey with Respect to Climatic Variability and Socio-Ecological Indicators. Aegean Geographical Journal, 26(2), 47–70.
  • UNISDR. (2017). Flood Hazard and Risk Assessment .
  • Yang, W., Xu, K., Lian, J., Bin, L., & Ma, C. (2018). Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model. Journal of Environmental Management, 213, 440–450. https://doi.org/10.1016/j.jenvman.2018.02.085
  • Yücel, G., & Arun, G. (2010). Earthquake and Physical and Social Vulnerability Assessment for Settlements: Case Study Avcilar District. MEGARON / Yıldız Technical University Faculty of Architecture E-Journal .
  • Zahran, S., Brody, S. D., Peacock, W. G., Vedlitz, A., & Grover, H. (2008). Social vulnerability and the natural and built environment: A model of flood casualties in Texas. Disasters, 32(4), 537–560. https://doi.org/10.1111/j.1467-7717.2008.01054.x
  • Zhang, N., & Huang, H. (2013). Social vulnerability for public safety: A case study of Beijing, China. Chinese Science Bulletin, 58(19), 2387–2394. https://doi.org/10.1007/s11434-013-5835-x

Türkiye Örneği Özelinde Taşkın Sosyal Etkilenebilirlik Analizi

Year 2022, Volume: 6 Issue: 2, 237 - 259, 25.07.2022
https://doi.org/10.31807/tjwsm.1089403

Abstract

Doğal afetler düşünüldüğünde, taşkınlar en sık karşılaşılan ve de en fazla hasara sebep olanlar arasında yer almaktadır. Taşkın riskini oluşturan bileşenlerin değerlendirilmesi ve riskin sayısallaştırılması, bu risk gerçekleştiğinde karşılaşılması beklenen büyük boyutlu etkilerden korunmak için önemlidir. Taşkın riskini kapsamlı bir şekilde değerlendirebilmek için riskin sosyal ve biyofiziksel katmanlarının birlikte ele alınması gerekmektedir. Bu çalışmada, toplumun herhangi bir dış baskı faktörüne karşı adaptasyon yeteneğini ve duyarlılığını ölçen Sosyal Etkilenebilirlik Endeksi, tüm Türkiye özelinde il bazında değerlendirilmiştir. Literatür taraması ve veri ulaşılabilirliği göz önüne alınarak 8 farklı etkilenebilirlik parametresi belirlenmiştir. Sosyal Etkilenebilirlik Endeksi analizi sonucunda 14 farklı şehir çok yüksek derecede etkilenebilir olarak nitelendirilmiştir. 1960 ve 2021 yılları arasındaki tarihi taşkınlar il bazında analiz edilmiştir. Sosyal Etkilenebilirlik Analizi ve tarihi taşkınların değerlendirilmesi sonucunda bu 14 şehirden yalnızca 3’ü Taşkın Sosyal Etkilenebilirlik Endeksi’nde en yüksek dereceyi almışıtr. Bu Taşkın Sosyal Etkilenebilirlik Endeksi analizi sonuçları yalnızca riskin sosyal veya biyofiziksel katmanlarının yeterli olmadığı, riskin kapsamlı şekilde ifade edilebilmesi için bu iki katmanın birlikte değerlendirilmesi gerektiğini ortaya koymuştur. Bu çalışmada uygulanan ve önerilen yöntem karar vericiler için kullanışlı bir metod olmakla beraber tüm Türkiye’deki taşkın hazırlık yetkinliğini arttırmada rol oynayabilecektir.

References

  • Abson, D. J., Dougill, A. J., & Stringer, L. C. (2012). Using Principal Component Analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Applied Geography, 35(1–2), 515–524. https://doi.org/10.1016/j.apgeog.2012.08.004
  • Akbulut, N. (Emir), Bayarı, S., Akbulut, A., Özyurt, N. N., & Sahin, Y. (2022). Rivers of Turkey. In Rivers of Europe (pp. 851–880). https://doi.org/10.1016/B978-0-08-102612-0.00017-1
  • Bolin, R. C., & Bolton, P. (1986). Race, Religion, and Ethnicity in Disaster Recovery. Program on Environment and Behavior Monograph, 282.
  • Chakraborty, L., Rus, H., Henstra, D., Thistlethwaite, J., & Scott, D. (2020). A place-based socioeconomic status index: Measuring social vulnerability to flood hazards in the context of environmental justice. International Journal of Disaster Risk Reduction, 43(July 2019), 101394. https://doi.org/10.1016/j.ijdrr.2019.101394
  • Chen, W., Wang, X., Deng, S., Liu, C., Xie, H., & Zhu, Y. (2019). Integrated urban flood vulnerability assessment using local spatial dependence-based probabilistic approach. Journal of Hydrology, 575(September 2018), 454–469. https://doi.org/10.1016/j.jhydrol.2019.05.043
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards n. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
  • Cutter, S. L., & Finch, C. (2018). Temporal and spatial changes in social vulnerability to natural hazards. Planning for Climate Change: A Reader in Green Infrastructure and Sustainable Design for Resilient Cities, 105(7), 129–137. https://doi.org/10.4324/9781351201117-16
  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2012). Revealing the vulnerability of people and places: A case study of Georgetown county, South carolina. Hazards, Vulnerability and Environmental Justice, 90(4), 83–114. https://doi.org/10.4324/9781849771542
  • Díez-Herrero, A., & Garrote, J. (2020). Flood Risk Assessments: Applications and Uncertainties. Water, 12(8). https://doi.org/10.3390/w12082096
  • Duzgun, H. S. B., Yucemen, M. S., Kalaycioglu, H. S., Celik, K., Kemec, S., Ertugay, K., & Deniz, A. (2011). An integrated earthquake vulnerability assessment framework for urban areas. Natural Hazards, 59(2), 917–947. https://doi.org/10.1007/s11069-011-9808-6
  • Fekete, A. (2009). Validation of a social vulnerability index in context to river-floods in Germany. Natural Hazards and Earth System Science, 9(2), 393–403. https://doi.org/10.5194/nhess-9-393-2009
  • Fernandez, P., Mourato, S., & Moreira, M. (2016). Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia. Geomatics, Natural Hazards and Risk, 7(4), 1367–1389. https://doi.org/10.1080/19475705.2015.1052021
  • Ganguly, K. K., Nahar, N., & Hossain, B. M. (2019). A machine learning-based prediction and analysis of flood affected households: A case study of floods in Bangladesh. International Journal of Disaster Risk Reduction, 34, 283–294. https://doi.org/10.1016/j.ijdrr.2018.12.002
  • Gómez Murciano, M., Liu, Y., Ünal, V., & Sánchez LIzaso, J. L. (2021). Comparative analysis of the social vulnerability assessment to climate change applied to fisheries from Spain and Turkey. Scientific Reports, 11(1), 13949. https://doi.org/10.1038/s41598-021-93165-0
  • Gu, H., Du, S., Liao, B., Wen, J., Wang, C., Chen, R., & Chen, B. (2018). A hierarchical pattern of urban social vulnerability in Shanghai, China and its implications for risk management. Sustainable Cities and Society, 41, 170–179. https://doi.org/10.1016/j.scs.2018.05.047
  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., … Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9). https://doi.org/10.1038/nclimate1911
  • Holand, I. S., Lujala, P., & Rød, J. K. (2011). Social vulnerability assessment for Norway: A quantitative approach. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 65(1), 1–17. https://doi.org/10.1080/00291951.2010.550167
  • Hoque, M. A. A., Tasfia, S., Ahmed, N., & Pradhan, B. (2019). Assessing spatial flood vulnerability at kalapara upazila in Bangladesh using an analytic hierarchy process. Sensors (Switzerland), Vol. 19. https://doi.org/10.3390/s19061302
  • Karagiorgos, K., Thaler, T., Heiser, M., Hübl, J., & Fuchs, S. (2016). Integrated flash flood vulnerability assessment: Insights from East Attica, Greece. Journal of Hydrology, Vol. 541, pp. 553–562. https://doi.org/10.1016/j.jhydrol.2016.02.052
  • Khajehei, S., Ahmadalipour, A., Shao, W., & Moradkhani, H. (2020). OPEN A Place-based Assessment of Flash Flood Hazard and Vulnerability in the Contiguous United States. 1–12. https://doi.org/10.1038/s41598-019-57349-z
  • Kong, X., Hu, C., & Duan, Z. (2017). Principal component analysis networks and algorithms. In Principal Component Analysis Networks and Algorithms. https://doi.org/10.1007/978-981-10-2915-8
  • Lugeri, N., Kundzewicz, Z. W., Genovese, E., Hochrainer, S., & Radziejewski, M. (2010). River flood risk and adaptation in Europe—assessment of the present status. Mitigation and Adaptation Strategies for Global Change, 15(7). https://doi.org/10.1007/s11027-009-9211-8
  • Mansur, A. V., Brondízio, E. S., Roy, S., Hetrick, S., Vogt, N. D., & Newton, A. (2016). An assessment of urban vulnerability in the Amazon Delta and Estuary: a multi-criterion index of flood exposure, socio-economic conditions and infrastructure. Sustainability Science, 11(4), 625–643. https://doi.org/10.1007/s11625-016-0355-7
  • Masia, S., Sušnik, J., Marras, S., Mereu, S., Spano, D., & Trabucco, A. (2018). Assessment of irrigated agriculture vulnerability under climate change in Southern Italy. Water (Switzerland), 10(2), 1–19. https://doi.org/10.3390/w10020209
  • Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103–117. https://doi.org/10.1016/j.geoforum.2017.09.008
  • Medina, N., Abebe, Y. A., Sanchez, A., & Vojinovic, Z. (2020). Assessing Socioeconomic Vulnerability after a Hurricane : A Combined Use of an Index-Based approach and Principal Components Analysis. Sustainability (Switzerland), 12. https://doi.org/10.3390/su12041452
  • Mohanty, M. P., H, V., Yadav, V., Ghosh, S., Rao, G. S., & Karmakar, S. (2020). A new bivariate risk classifier for flood management considering hazard and socio-economic dimensions. Journal of Environmental Management, 255(October 2019), 109733. https://doi.org/10.1016/j.jenvman.2019.109733
  • Monterroso, A., Conde, C., Gay, C., Gómez, D., & López, J. (2014). Two methods to assess vulnerability to climate change in the Mexican agricultural sector. Mitigation and Adaptation Strategies for Global Change, 19(4), 445–461. https://doi.org/10.1007/s11027-012-9442-y
  • Moreira, L. L., de Brito, M. M., & Kobiyama, M. (2021). Effects of Different Normalization, Aggregation, and Classification Methods on the Construction of Flood Vulnerability Indexes. Water, 13(1), 98. https://doi.org/10.3390/w13010098
  • Munyai, R. B., Musyoki, A., & Nethengwe, N. S. (2019). An assessment of flood vulnerability and adaptation: A case study of Hamutsha-Muungamunwe village, Makhado municipality. Jamba: Journal of Disaster Risk Studies, Vol. 11. https://doi.org/10.4102/jamba.v11i2.692
  • Nasiri, H., Mohd Yusof, M. J., & Mohammad Ali, T. A. (2016). An overview to flood vulnerability assessment methods. Sustainable Water Resources Management, 2(3), 331–336. https://doi.org/10.1007/s40899-016-0051-x
  • OECD. (2022). Selected indicators for Turkey. Retrieved March 17, 2022, from OECD website: https://data.oecd.org/turkey.htm
  • Ranger, N., Hallegatte, S., Bhattacharya, S., Bachu, M., Priya, S., Dhore, K., … Corfee-Morlot, J. (2011). An assessment of the potential impact of climate change on flood risk in Mumbai. Climatic Change, 104(1), 139–167. https://doi.org/10.1007/s10584-010-9979-2
  • Reyes-Acevedo, M. A., Flacke, J., & Brussel, M. (2011). Urban flash flood vulnerability : spatial assessment and adaptation - a case study in Istanbul, Turkey. Environmental Science.
  • Roder, G., Sofia, G., Wu, Z., & Tarolli, P. (2017). Assessment of Social Vulnerability to floods in the floodplain of northern Italy. Weather, Climate, and Society, 9(4), 717–737. https://doi.org/10.1175/WCAS-D-16-0090.1
  • Roncancio, D. J., & Nardocci, A. C. (2016). Social vulnerability to natural hazards in São Paulo, Brazil. Natural Hazards, 84(2), 1367–1383. https://doi.org/10.1007/s11069-016-2491-x
  • Rufat, S., & Botzen, W. J. W. (2022). Drivers and dimensions of flood risk perceptions: Revealing an implicit selection bias and lessons for communication policies. Global Environmental Change, 73, 102465. https://doi.org/10.1016/j.gloenvcha.2022.102465
  • Santos, P. P., Tavares, A. O., Freire, P., & Rilo, A. (2018). Estuarine flooding in urban areas: enhancing vulnerability assessment. Natural Hazards, 93, 77–95. https://doi.org/10.1007/s11069-017-3067-0
  • St. Cyr, J. F. (2005). At Risk: Natural Hazards, People’s Vulnerability, and Disasters. Journal of Homeland Security and Emergency Management, 2(2). https://doi.org/10.2202/1547-7355.1131
  • Taghavi, M., Hasirchian, M., Han, M., Taghavi, J., & Pirzadeh, S. (2011). Basin Characteristics Impact on Flood Risk Management: A Case Study of the Babol River in Iran . The 4th IWA-ASPIRE 2011.
  • Tanir, T., de Lima, A. de S., de A. Coelho, G., Uzun, S., Cassalho, F., & Ferreira, C. M. (2021). Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed. Natural Hazards, 108(1). https://doi.org/10.1007/s11069-021-04677-x
  • Tanir, T., Sumi, S. J., de Lima, A. de S., de A. Coelho, G., Uzun, S., Cassalho, F., & Ferreira, C. M. (2021). Multi-scale comparison of urban socio-economic vulnerability in the Washington, DC metropolitan region resulting from compound flooding. International Journal of Disaster Risk Reduction, 61. https://doi.org/10.1016/j.ijdrr.2021.102362
  • Tascón-González, L., Ferrer-Julià, M., Ruiz, M., & García-Meléndez, E. (2020). Social Vulnerability Assessment for Flood Risk Analysis. Water, 12(2). https://doi.org/10.3390/w12020558
  • Tate, E., Rahman, M. A., Emrich, C. T., & Sampson, C. C. (2021). Flood exposure and social vulnerability in the United States. Natural Hazards, 106(1). https://doi.org/10.1007/s11069-020-04470-2
  • TUIK. (2022). TUIK: Geographic Statistics Portal. Retrieved March 17, 2022, from Turkish Statistical Service website: https://cip.tuik.gov.tr/
  • Türkeş, M. (2017). Drought Vulnerability and Risk Analysis of Turkey with Respect to Climatic Variability and Socio-Ecological Indicators. Aegean Geographical Journal, 26(2), 47–70.
  • UNISDR. (2017). Flood Hazard and Risk Assessment .
  • Yang, W., Xu, K., Lian, J., Bin, L., & Ma, C. (2018). Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model. Journal of Environmental Management, 213, 440–450. https://doi.org/10.1016/j.jenvman.2018.02.085
  • Yücel, G., & Arun, G. (2010). Earthquake and Physical and Social Vulnerability Assessment for Settlements: Case Study Avcilar District. MEGARON / Yıldız Technical University Faculty of Architecture E-Journal .
  • Zahran, S., Brody, S. D., Peacock, W. G., Vedlitz, A., & Grover, H. (2008). Social vulnerability and the natural and built environment: A model of flood casualties in Texas. Disasters, 32(4), 537–560. https://doi.org/10.1111/j.1467-7717.2008.01054.x
  • Zhang, N., & Huang, H. (2013). Social vulnerability for public safety: A case study of Beijing, China. Chinese Science Bulletin, 58(19), 2387–2394. https://doi.org/10.1007/s11434-013-5835-x
There are 51 citations in total.

Details

Primary Language English
Journal Section TURKISH JOURNAL OF WATER SCIENCES AND MANAGEMENT
Authors

Tuğkan Tanır

Satuk Buğra Fındık

Tuğçehan Fikret Girayhan

Öner Yorulmaz

Early Pub Date July 25, 2022
Publication Date July 25, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Tanır, T., Fındık, S. B., Girayhan, T. F., Yorulmaz, Ö. (2022). Flood Social Vulnerability Assessment: A case study of Türkiye. Turkish Journal of Water Science and Management, 6(2), 237-259. https://doi.org/10.31807/tjwsm.1089403