Research Article
BibTex RIS Cite

INTEGRATION OF DIGITAL FABRICATION LABORATORIES AND COMPUTATIONAL DESIGN INTO THE ARCHITECTURE CURRICULUM IN TÜRKİYE

Year 2024, Volume: 14 Issue: 4, 902 - 918, 01.10.2024
https://doi.org/10.7456/tojdac.1512458

Abstract

The discipline of architecture undergoes transformation practically, cognitively, and pedagogically due to the widespread use of digital design and fabrication technologies in design processes. This paper aims to eluctade the integration of digital fabrication and computational design with architectural design education at undergraduate level. For this purpose, this study examined the undergraduate course contents and spatial conditions of leading universities with digital fabrication laboratories under three headings: digital design, digital fabrication, and spatial reflections. In addition, this research applied semi-structured interviews with the relevant faculty members of three universities that have robotic tools to obtain more detailed information about their pedagogical approaches. According to this study, the curriculum and laboratories are rapidly changing. As a result, architecture departments are expanding their facilities by building laboratories and tools that have the potential for architectural education to fill the gap between practice and theory. However, there are economic limitations to implementing digital fabrication technologies in terms of the tools and materials used by hundreds of students. This research discusses the requirements, potentials, and limitations of theoretical and practical training through digital fabrication tools that should be included in these courses in the curriculum.

References

  • Alaçam, S. (2022). Interviewed by authors-31 December.
  • Allam, S., & Alaçam, S. (2021). A Comparative Analysis of the Tool-Based versus Material-Based Fabrication Pedagogy in the Context of Digital Craft. Projections - Proceedings of the 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, CAADRIA 2021, 2, 11–20. https://doi.org/10.52842/conf.caadria.2021.2.011
  • Amundsen, M. (2018). Q&A with Juhani Pallasmaa on Architecture, Aesthetics of Atmospheres and the Passage of Time. Ambiances, 1–7. https://doi.org/10.4000/ambiances.1257
  • Antonio, R. J., & Bonanno, A. (2000). A New Global Capitalism ? From " Americanism and Fordism " to " Americanization-Globalization ". American Studies, 41(2/3), 33–77.
  • Arkitera. (n.d.-a). ODTÜ ArchLabs: FabLab.
  • Arkitera. (n.d.-b). ODTÜ ArchLabs: FabLab. Retrieved January 15, 2023, from https://www.arkiv.com.tr/proje/odtu-archlabs--fablab/8921
  • Bell, L., Brown, A., Bull, G., Conly, K., Johnson, L. M., McAnear, A., Maddux, C., Marks, G., Thompson, A., Schmidt, D., Schrum, L., Smaldino, S., Spector, M., & Sprague, D. (2010). A Special Editorial: Educational Implications of the Digital Fabrication Revolution. TechTrends, 54(5), 2–5. https://doi.org/10.1007/s11528-010-0423-2
  • Beorkrem, C. (2017). Material Strategies in Digital Fabrication. Routledge. https://doi.org/10.1037/0011073
  • Bhatia, S. K., & Sharma, S. (2014). 3D-printed prosthetics roll off the presses. American Institute of Chemical Engineers (AIChE), May, 28–33. Bodea, S., Dambrosio, N., Zechmeister, C., Menges, A., Perez, M. G., Koslowski, V., Rongen, B., Knippers, J., Dörstelmann, M., & Kyjanek, O. (2020). Buga Fibre Pavilion:Towards Robotically-Fabricated Composite Building Structures. In Fabricate 2020 Making Resilient Architecture (Issue Nisan, pp. 234–243). https://doi.org/10.2307/j.ctv13xpsvw.35
  • Caetano, I., & Leitão, A. (2020). Architecture meets computation: an overview of the evolution of computational design approaches in architecture. Architectural Science Review, 63(2), 165–174. https://doi.org/10.1080/00038628.2019.1680524
  • Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining parametric, generative, and algorithmic design. Frontiers of Architectural Research, 9(2), 287–300. https://doi.org/https://doi.org/10.1016/j.foar.2019.12.008
  • Çağdaş, G., Bacınoğlu, S. Z., & Çavuşoğlu, Ö. H. (2015). Mimarlıkta Hesaplamalı Yaklaşımlar. Dosya 35, 2, 33–43.
  • Carpenter, W. J. (2014). Digital Fabrication and the Design Build Studio. 102nd ACSA Annual Meeting. GLOBALIZING ARCHITECTURE / Flows and Disruptions, 513–521.
  • Celani, G. (2012). Digital Fabrication Laboratories: Pedagogy and Impacts on Architectural Education. Nexus Network Journal, 14(3), 469–482. https://doi.org/10.1007/s00004-012-0120-x
  • Çil, E., Çolakoğlu, B., Erdoğan, M., Özsel-Akipek, F., Pakdil, O., Yalınay-Çinici, Ş., & Yazar, T. (2007). Mimarlık Eğitimi ve Sanal Akıl: İlk yıl tasarım atölyelerinde uygulanan alıştırmalara dair bazı notlar. In YTU Mimarlık Bölümü Tasarım Eğitimi Semineri (pp. 17–31).
  • Çinici, Ş. Y. (2012). Computatıon|Çevirisi ve Anlaması Kolay Olmayan- Dil, Düşünce ve Mimarlık. Dosya 29 Hesaplamalı Tasarım.
  • Çolakoǧlu, B., & Yazar, T. (2007). Algorithm in architectural education: Studio works. Journal of the Faculty of Engineering and Architecture of Gazi University, 22(3), 379–385.
  • Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review and research directions. International Journal of Production Economics, 72, 1–13. https://doi.org/10.1016/S0925-5273(00)00079-7
  • Dunham-Jones, E. (1997). Stars, Swatches and Sweets: Thoughts on Post-Fordist Production and the Star System in Architecture. Thresholds, 15. https://doi.org/10.1162/thld_a_00534
  • El-zanfaly, D. (2015). [I3] Imitation, Iteration and Improvisation: Embodied interaction in making and learning. Design Studies, 41, 79–109. https://doi.org/10.1016/j.destud.2015.09.002
  • ESTU. (n.d.-a). Mimarlık Bölümü Ders İçerikleri ve İntibaklar. Eskişehir Üniversitesi. Retrieved March 2, 2023, from https://mtf.eskisehir.edu.tr/tr/Icerik/Detay/mimarlik-bolumu-ders-icerikleri-ve-intibaklar-2
  • ESTU. (n.d.-b). Mimarlık Bölümü Ders İçerikleri ve İntibaklar. Eskişehir Üniversitesi. Retrieved March 2, 2023, from https://mtf.eskisehir.edu.tr/tr/Icerik/Detay/mimarlik-bolumu-ders-icerikleri-ve-intibaklar-2
  • Findeli, A. (2001). Rethinking Design Education for the 21st Century: Theoretical, Methodological, and Ethical Discussion. Design Issues, 17(1), 5–17. https://doi.org/10.1162/07479360152103796
  • Fogliatto, F. S., Da Silveira, G. J. C., & Borenstein, D. (2012). The mass customization decade: An updated review of the literature. International Journal of Production Economics, 138(1), 14–25. https://doi.org/10.1016/j.ijpe.2012.03.002
  • Gramsci, A. (1999). Selections from the prison notebooks. In Quentin Hoare and Geoffrey Nowell Smith (Ed.), ElecBook. https://doi.org/10.4324/9780429355363-27
  • GTU. (n.d.). AKTS-TYYÇ Bilgi Paketi. Gebze Teknik Üniversitesi. Retrieved August 12, 2023, from https://abl.gtu.edu.tr/ects/?duzey=ucuncu&modul=lisans_derskatalogu&bolum=326&tip=lisans
  • Gül, L. F., Çağdaş, G., Çağlar, N., Gül, M., Sipahioğlu-Ruhi, I., & Balaban, Ö. (2013). Türkiye’de Mimarlık Eğitimi ve Bilişim Teknolojileri. 7.Mimarlıkta Sayısal Tasarım Ulusal Sempozyumu, 11–16.
  • Gündüz, G., Oral, H., & Yazar, T. (2018). Integration of Design Geometry with “Computational Making” in Basic Design Studio A Case Study of Lanterns Project. Proceedings of the 36th ECAADe Conference, 2, 439–448.
  • Gürsoy, B. (1920). The Hands-on Basics of Contemporary Design Education. Cumincad.Architexturez.Net, 2, 59–66.
  • Hairston, M. (1982). The Winds of Change: Thomas Kuhn and the Revolution in the Teaching of Writing. College Composition and Communication, 33(1), 76–88. https://doi.org/10.2307/357846
  • IBUN. (n.d.-a). Eğitim ve Öğretim Bilgi Sistemi. İstanbul Bilgi Üniversitesi. Retrieved May 14, 2023, from https://ects.bilgi.edu.tr/Course
  • IBUN. (n.d.-b). Bilgi Make. Istanbul Bilgi University. https://yap.bilgi.edu.tr/
  • IBUN. (n.d.-c). Eğitim ve Öğretim Bilgi Sistemi. İstanbul Bilgi Üniversitesi. Retrieved May 14, 2023, from https://ects.bilgi.edu.tr/Course
  • IEU. (n.d.-a). D.Makerlab. İsmir University of Economics. Retrieved March 18, 2024, from https://dmakerlab.ieu.edu.tr/index.php/sections/
  • IEU. (n.d.-b). Öğretim Programı. İzmir Ekonomi Ünversitesi, Mimarlık Bölümü. Retrieved December 7, 2023, from https://mmr.ieu.edu.tr/tr/curr
  • İşbitiren, İ. (2020). Mimarlıkta hesaplamalı tasarım ve üretim yaklaşımları: Pavyonlar üzerine inceleme. Tasarım Enformatiği, 2(1), 37–46.
  • ISU. (n.d.-a). DFab-Lab. İstinye Üniversitesi, Güzel Sanatlar, Tasarım ve Mimarlık Fakültesi. Retrieved November 15, 2023, from https://gstm.istinye.edu.tr/tr/haberler/dfab-lab
  • ISU. (n.d.-b). Mimarlık Ders Planı. İstinye Üniversitesi. Retrieved February 10, 2024, from https://gstm.istinye.edu.tr/tr/departments/mimarlik/ders-plani
  • ITU. (n.d.-a). Ninova Ders Kataloğu. İstanbul Teknik Üniversitesi, Mimarlık Fakültesi Ders Kataloğu. Retrieved June 15, 2023, from https://ninova.itu.edu.tr/tr/dersler/
  • ITU. (n.d.-b). Ninova Ders Kataloğu. İstanbul Teknik Üniversitesi, Mimarlık Fakültesi Ders Kataloğu. Retrieved June 15, 2023, from https://ninova.itu.edu.tr/tr/dersler/
  • Jenny, D., Mayer, H., Aejmelaeus-Lindström, P., Gramazio, F., & Kohler, M. (2022). A Pedagogy of Digital Materiality: Integrated Design and Robotic Fabrication Projects of the Master of Advanced Studies in Architecture and Digital Fabrication. Architecture, Structures and Construction, 0123456789. https://doi.org/10.1007/s44150-022-00040-1
  • Jessop, B. (1992). Fordism and post-fordism: A critical reformulation. In Pathways to Industrialization and Regional Development (pp. 42–62). Routledge. https://doi.org/10.4324/9780203995549
  • KTU. (n.d.-a). Ders Kataloğu. Karadeniz Teknik Üniversitesi Mimarlık Fakültesi . Retrieved June 14, 2023, from https://katalog.ktu.edu.tr/DersBilgiPaketi/generalinfo.aspx?pid=586&lang=1
  • KTU. (n.d.-b). Sayısal Tasarım Araştırma ve Fabrikasyon Birimi. Karadeniz Technical University. Retrieved March 18, 2024, from https://www.ktu.edu.tr/ktucodefab
  • Kuhn, T. S. (1996). The Structure of Scientific Revolutions. University of Chicago Press.
  • LTU. (2024). LTU CoAD buildLab. https://www.ltu.edu/architecture-and-design/buildlab
  • Mao-Lin, C. (2006). The jump of digital design thinking: Overviews of Digital Architectural Design Education. CAADRIA Proceedings. https://papers.cumincad.org/data/works/att/caadria2006_027.content.pdf
  • Meister, A.-M. (2020). Ernst Neufert’s ‘Lebensgestaltungslehre’: formatting life beyond the built. BJHS Themes, 5, 167–185. https://doi.org/10.1017/bjt.2020.13
  • Menges, A., & Reichert, S. (2015). Performative wood: Physically programming the responsive architecture of the HygroScope and HygroSkin projects. Architectural Design, 85(5), 66–73. https://doi.org/10.1002/ad.1956
  • METU. (n.d.-a). Courses given by the Department of Architecture. Middle East Technical University. Retrieved February 8, 2023, from https://catalog.metu.edu.tr/prog_courses.php?prog=120
  • METU. (n.d.-b). Courses given by the Department of Architecture. Middle East Technical University. Retrieved February 8, 2023, from https://catalog.metu.edu.tr/prog_courses.php?prog=120
  • Mıhlayanlar, E., & Tachir, G. (2019). Mimarlık Eğitiminde Bilgisayar Destekli Tasarımdan Bina Enformasyonuna From Computer Aided Design to Building Information in Architecture Education. Artium, 7(2), 167–179.
  • Neufert, E. (1980). Architects’ Data Second (International) English Edition. In Blackwell Science Ltd.
  • Oktan, S., & Vural, S. (2022). Integrating Computational Fabrication Methods with Architectural Education. Journal of Computational Design, 3(2), 111–134. http://dx.doi.org/10.53710/jcode.1149803
  • Oxman, N., Laucks, J., Kayser, M., Duro-royo, J., & Gonzales-Uribe, C. (2014). Silk Pavilion : A Case Study in FIbre-Based Digital Fabrication. FABRICATE Conference Proceedings, 248–255.
  • Özkar, M. (2004). Uncertainties of reason: pragmatist plurality in basic design education.
  • Özkar, M. (2007). Learning by doing in the age of design computation. Computer-Aided Architectural Design Futures, CAADFutures 2007 - Proceedings of the 12th International CAADFutures Conference, 99–112. https://doi.org/10.1007/978-1-4020-6528-6_8
  • Paio, A., Eloy, S., Rato, V. M., Resende, R., & de Oliveira, M. J. (2012a). Prototyping Vitruvius, New Challenges: Digital Education, Research and Practice. Nexus Network Journal, 14(3), 409–429. https://doi.org/10.1007/s00004-012-0124-6
  • Paio, A., Eloy, S., Rato, V. M., Resende, R., & de Oliveira, M. J. (2012b). Prototyping Vitruvius, New Challenges: Digital Education, Research and Practice. Nexus Network Journal, 14(3), 409–429. https://doi.org/10.1007/s00004-012-0124-6
  • Piller, F. T. (2004). Mass Customization Reflections on the State of the Concept - 2005.pdf. The International Journal of Flexible Manufacturing Systems, 16, 313–334.
  • PlanFinder. (2024). Download. https://www.planfinder.xyz/download
  • Sehgal, V. (2015). Formative Studios in Architecture Design: Pedagogy Based on the Syntax. Creative Space, 3(1), 83–101. https://doi.org/10.15415/cs.2015.31007
  • Sharif, S., & Russell Gentry, T. (2015). Design cognition shift from craftsman to digital maker. CAADRIA 2015 - 20th International Conference on Computer-Aided Architectural Design Research in Asia: Emerging Experiences in the Past, Present and Future of Digital Architecture, August, 683–692.
  • Siebenbrodt, M., & Schöbe, L. (2009). Bauhaus 1919-1933 Weimar-Dessau-Berlin. Parkstone International.
  • Terzidis, K. (2003). Expressive form: A conceptual approach to computational design. In Expressive Form: A Conceptual Approach to Computational Design. https://doi.org/10.4324/9780203586891
  • Tseng, M. M., Jiao, J., & Merchant, M. E. (1996). Design for Mass Customization. CIRP Annals - Manufacturing Technology, 45(1), 153–156. https://doi.org/10.1016/S0007-8506(07)63036-4
  • Ünlü, E., & Alaçam, S. (2020). Formal Methods in Architecture. In S. Eloy, D. Leite Viana, F. Morais, & J. Vieira Vaz (Eds.), Formal Methods in Archtiecture. Proceedings of the 5th International Symposiıum on Formal Methods in Architecture. Springer International Publishing. https://doi.org/10.1007/978-3-030-57509-0
  • Uygun, E. (2013). an Integrated Approach for Technological Pedagogical Content (Issue September). METU.
  • Vural, S., Oktan, S., & Aydin, C. (2023). Interviewed by authors-02 January.
  • Yao, X., & Lin, Y. (2016). Emerging manufacturing paradigm shifts for the incoming industrial revolution. The International Journal of Advanced Manufacturing Technology, 85(5–8), 1665–1676. https://doi.org/10.1007/s00170-015-8076-0
  • Yazar, T. (2023). Interviewed by authors-13 Mart.
  • Yazar, T., Oral-Karakoç, H., Gündüz, G., & Yabanigül, M. N. (2023a). Integrating Robotic Fabrication into the Basic Design Studio. Nexus Network Journal, 25(4), 999–1013. https://doi.org/10.1007/s00004-023-00648-w
  • Yazar, T., Oral-Karakoç, H., Gündüz, G., & Yabanigül, M. N. (2023b). Integrating Robotic Fabrication into the Basic Design Studio. Nexus Network Journal, 25(4), 999–1013. https://doi.org/10.1007/s00004-023-00648-w
  • Yazici, S. (2020). Rule-based rationalization of form: learning by computational making. International Journal of Technology and Design Education, 30(3), 613–633. https://doi.org/10.1007/s10798-019-09509-5
  • Yıldırım, T., İnan, N., & Yavuz Özen, A. (2010). Mimari Tasarım Eğitiminde Bilişim Teknolojilerinin Kullanımı ve Etkileri. AB2010 Akademik Bilişim.
  • YU. (n.d.-a). Müfredat, Mimarlık Bölümü Ders Planı. Yaşar Üniversitesi. Retrieved December 8, 2023, from https://arch.yasar.edu.tr/ders-icerikleri/
  • YU. (n.d.-b). Müfredat, Mimarlık Bölümü Ders Planı. Yaşar Üniversitesi. Retrieved December 8, 2023, from https://arch.yasar.edu.tr/ders-icerikleri/
  • Zhang, Y., Xu, X., & Liu, Y. (2011). Numerical control machining simulation: A comprehensive survey. International Journal of Computer Integrated Manufacturing, 24(7), 593–609. https://doi.org/10.1080/0951192X.2011.566283

TÜRKİYE'DE DİJİTAL ÜRETİM LABORATUVARLARININ VE HESAPLAMALI TASARIMIN MİMARLIK ÖĞRETİM PLANI İLE ENTEGRASYONU

Year 2024, Volume: 14 Issue: 4, 902 - 918, 01.10.2024
https://doi.org/10.7456/tojdac.1512458

Abstract

Mimarlık; sayısal tasarım ve üretim teknolojilerinin mimari tasarım ve uygulama süreçlerinde yaygın olarak kullanılmaya başlamasıyla birlikte pratik, bilişsel iş akışı ve pedagojik açıdan dönüşüm geçirmektedir. Bu çalışma ise pedagojik dönüşümü dolayısıyla sayısal tasarım ve üretimin mimarlık eğitimine lisans düzeyinde entegrasyonunu ele almayı hedeflemektedir. Bu amaçla çalışmada, sayısal üretim laboratuvarlarına sahip önde gelen üniversitelerin lisans ders içerikleri ve mekânsal koşulları sayısal tasarım, sayısal üretim ve mekânsal yansımalar olmak üzere üç başlık altında incelenmiştir. Ayrıca bu araştırmada, mimarlık bölümünde kullanılabilen robotik araçlara sahip üç üniversitenin ilgili öğretim üyeleriyle yarı yapılandırılmış görüşmeler yapılarak kurumların pedagojik yaklaşımları hakkında daha detaylı bilgi edinilmiştir. Bu çalışmaya göre, mimarlık fakültelerinin müfredatları ve laboratuvarları bir dönüşüm içerisindedir. Mimarlık bölümleri, mimarlık eğitiminin pratik ve teori arasındaki boşluğu doldurma potansiyeline sahip bu laboratuvarları kurarak ve araçlar temin ederek kurumların araştırma alanını genişletmektedir. Ancak, çok sayıda öğrenci tarafından kullanılması planlanan bu araç ve malzemeler açısından sayısal üretim teknolojilerinin uygulanmasında ekonomik birtakım sınırlamalar bulunmaktadır. Özetle bu araştırma, bu alanda müfredata dahil edilmesi gereken teorik ve pratik gereklilikleri, potansiyelleri ve sınırlamalarını tartışmaktadır.

Ethical Statement

E-20189260-100-556486 Kocaeli Üniversitesi Fen ve Mühendislik Bilimleri Etik Kurulunun 22/02/2024 tarih ve 2024/03 no lu toplantısında alınan karara göre; bilimsel araştırma ve yayın etiği açısından herhangi bir sakınca bulunmamaktadır.

References

  • Alaçam, S. (2022). Interviewed by authors-31 December.
  • Allam, S., & Alaçam, S. (2021). A Comparative Analysis of the Tool-Based versus Material-Based Fabrication Pedagogy in the Context of Digital Craft. Projections - Proceedings of the 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, CAADRIA 2021, 2, 11–20. https://doi.org/10.52842/conf.caadria.2021.2.011
  • Amundsen, M. (2018). Q&A with Juhani Pallasmaa on Architecture, Aesthetics of Atmospheres and the Passage of Time. Ambiances, 1–7. https://doi.org/10.4000/ambiances.1257
  • Antonio, R. J., & Bonanno, A. (2000). A New Global Capitalism ? From " Americanism and Fordism " to " Americanization-Globalization ". American Studies, 41(2/3), 33–77.
  • Arkitera. (n.d.-a). ODTÜ ArchLabs: FabLab.
  • Arkitera. (n.d.-b). ODTÜ ArchLabs: FabLab. Retrieved January 15, 2023, from https://www.arkiv.com.tr/proje/odtu-archlabs--fablab/8921
  • Bell, L., Brown, A., Bull, G., Conly, K., Johnson, L. M., McAnear, A., Maddux, C., Marks, G., Thompson, A., Schmidt, D., Schrum, L., Smaldino, S., Spector, M., & Sprague, D. (2010). A Special Editorial: Educational Implications of the Digital Fabrication Revolution. TechTrends, 54(5), 2–5. https://doi.org/10.1007/s11528-010-0423-2
  • Beorkrem, C. (2017). Material Strategies in Digital Fabrication. Routledge. https://doi.org/10.1037/0011073
  • Bhatia, S. K., & Sharma, S. (2014). 3D-printed prosthetics roll off the presses. American Institute of Chemical Engineers (AIChE), May, 28–33. Bodea, S., Dambrosio, N., Zechmeister, C., Menges, A., Perez, M. G., Koslowski, V., Rongen, B., Knippers, J., Dörstelmann, M., & Kyjanek, O. (2020). Buga Fibre Pavilion:Towards Robotically-Fabricated Composite Building Structures. In Fabricate 2020 Making Resilient Architecture (Issue Nisan, pp. 234–243). https://doi.org/10.2307/j.ctv13xpsvw.35
  • Caetano, I., & Leitão, A. (2020). Architecture meets computation: an overview of the evolution of computational design approaches in architecture. Architectural Science Review, 63(2), 165–174. https://doi.org/10.1080/00038628.2019.1680524
  • Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining parametric, generative, and algorithmic design. Frontiers of Architectural Research, 9(2), 287–300. https://doi.org/https://doi.org/10.1016/j.foar.2019.12.008
  • Çağdaş, G., Bacınoğlu, S. Z., & Çavuşoğlu, Ö. H. (2015). Mimarlıkta Hesaplamalı Yaklaşımlar. Dosya 35, 2, 33–43.
  • Carpenter, W. J. (2014). Digital Fabrication and the Design Build Studio. 102nd ACSA Annual Meeting. GLOBALIZING ARCHITECTURE / Flows and Disruptions, 513–521.
  • Celani, G. (2012). Digital Fabrication Laboratories: Pedagogy and Impacts on Architectural Education. Nexus Network Journal, 14(3), 469–482. https://doi.org/10.1007/s00004-012-0120-x
  • Çil, E., Çolakoğlu, B., Erdoğan, M., Özsel-Akipek, F., Pakdil, O., Yalınay-Çinici, Ş., & Yazar, T. (2007). Mimarlık Eğitimi ve Sanal Akıl: İlk yıl tasarım atölyelerinde uygulanan alıştırmalara dair bazı notlar. In YTU Mimarlık Bölümü Tasarım Eğitimi Semineri (pp. 17–31).
  • Çinici, Ş. Y. (2012). Computatıon|Çevirisi ve Anlaması Kolay Olmayan- Dil, Düşünce ve Mimarlık. Dosya 29 Hesaplamalı Tasarım.
  • Çolakoǧlu, B., & Yazar, T. (2007). Algorithm in architectural education: Studio works. Journal of the Faculty of Engineering and Architecture of Gazi University, 22(3), 379–385.
  • Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review and research directions. International Journal of Production Economics, 72, 1–13. https://doi.org/10.1016/S0925-5273(00)00079-7
  • Dunham-Jones, E. (1997). Stars, Swatches and Sweets: Thoughts on Post-Fordist Production and the Star System in Architecture. Thresholds, 15. https://doi.org/10.1162/thld_a_00534
  • El-zanfaly, D. (2015). [I3] Imitation, Iteration and Improvisation: Embodied interaction in making and learning. Design Studies, 41, 79–109. https://doi.org/10.1016/j.destud.2015.09.002
  • ESTU. (n.d.-a). Mimarlık Bölümü Ders İçerikleri ve İntibaklar. Eskişehir Üniversitesi. Retrieved March 2, 2023, from https://mtf.eskisehir.edu.tr/tr/Icerik/Detay/mimarlik-bolumu-ders-icerikleri-ve-intibaklar-2
  • ESTU. (n.d.-b). Mimarlık Bölümü Ders İçerikleri ve İntibaklar. Eskişehir Üniversitesi. Retrieved March 2, 2023, from https://mtf.eskisehir.edu.tr/tr/Icerik/Detay/mimarlik-bolumu-ders-icerikleri-ve-intibaklar-2
  • Findeli, A. (2001). Rethinking Design Education for the 21st Century: Theoretical, Methodological, and Ethical Discussion. Design Issues, 17(1), 5–17. https://doi.org/10.1162/07479360152103796
  • Fogliatto, F. S., Da Silveira, G. J. C., & Borenstein, D. (2012). The mass customization decade: An updated review of the literature. International Journal of Production Economics, 138(1), 14–25. https://doi.org/10.1016/j.ijpe.2012.03.002
  • Gramsci, A. (1999). Selections from the prison notebooks. In Quentin Hoare and Geoffrey Nowell Smith (Ed.), ElecBook. https://doi.org/10.4324/9780429355363-27
  • GTU. (n.d.). AKTS-TYYÇ Bilgi Paketi. Gebze Teknik Üniversitesi. Retrieved August 12, 2023, from https://abl.gtu.edu.tr/ects/?duzey=ucuncu&modul=lisans_derskatalogu&bolum=326&tip=lisans
  • Gül, L. F., Çağdaş, G., Çağlar, N., Gül, M., Sipahioğlu-Ruhi, I., & Balaban, Ö. (2013). Türkiye’de Mimarlık Eğitimi ve Bilişim Teknolojileri. 7.Mimarlıkta Sayısal Tasarım Ulusal Sempozyumu, 11–16.
  • Gündüz, G., Oral, H., & Yazar, T. (2018). Integration of Design Geometry with “Computational Making” in Basic Design Studio A Case Study of Lanterns Project. Proceedings of the 36th ECAADe Conference, 2, 439–448.
  • Gürsoy, B. (1920). The Hands-on Basics of Contemporary Design Education. Cumincad.Architexturez.Net, 2, 59–66.
  • Hairston, M. (1982). The Winds of Change: Thomas Kuhn and the Revolution in the Teaching of Writing. College Composition and Communication, 33(1), 76–88. https://doi.org/10.2307/357846
  • IBUN. (n.d.-a). Eğitim ve Öğretim Bilgi Sistemi. İstanbul Bilgi Üniversitesi. Retrieved May 14, 2023, from https://ects.bilgi.edu.tr/Course
  • IBUN. (n.d.-b). Bilgi Make. Istanbul Bilgi University. https://yap.bilgi.edu.tr/
  • IBUN. (n.d.-c). Eğitim ve Öğretim Bilgi Sistemi. İstanbul Bilgi Üniversitesi. Retrieved May 14, 2023, from https://ects.bilgi.edu.tr/Course
  • IEU. (n.d.-a). D.Makerlab. İsmir University of Economics. Retrieved March 18, 2024, from https://dmakerlab.ieu.edu.tr/index.php/sections/
  • IEU. (n.d.-b). Öğretim Programı. İzmir Ekonomi Ünversitesi, Mimarlık Bölümü. Retrieved December 7, 2023, from https://mmr.ieu.edu.tr/tr/curr
  • İşbitiren, İ. (2020). Mimarlıkta hesaplamalı tasarım ve üretim yaklaşımları: Pavyonlar üzerine inceleme. Tasarım Enformatiği, 2(1), 37–46.
  • ISU. (n.d.-a). DFab-Lab. İstinye Üniversitesi, Güzel Sanatlar, Tasarım ve Mimarlık Fakültesi. Retrieved November 15, 2023, from https://gstm.istinye.edu.tr/tr/haberler/dfab-lab
  • ISU. (n.d.-b). Mimarlık Ders Planı. İstinye Üniversitesi. Retrieved February 10, 2024, from https://gstm.istinye.edu.tr/tr/departments/mimarlik/ders-plani
  • ITU. (n.d.-a). Ninova Ders Kataloğu. İstanbul Teknik Üniversitesi, Mimarlık Fakültesi Ders Kataloğu. Retrieved June 15, 2023, from https://ninova.itu.edu.tr/tr/dersler/
  • ITU. (n.d.-b). Ninova Ders Kataloğu. İstanbul Teknik Üniversitesi, Mimarlık Fakültesi Ders Kataloğu. Retrieved June 15, 2023, from https://ninova.itu.edu.tr/tr/dersler/
  • Jenny, D., Mayer, H., Aejmelaeus-Lindström, P., Gramazio, F., & Kohler, M. (2022). A Pedagogy of Digital Materiality: Integrated Design and Robotic Fabrication Projects of the Master of Advanced Studies in Architecture and Digital Fabrication. Architecture, Structures and Construction, 0123456789. https://doi.org/10.1007/s44150-022-00040-1
  • Jessop, B. (1992). Fordism and post-fordism: A critical reformulation. In Pathways to Industrialization and Regional Development (pp. 42–62). Routledge. https://doi.org/10.4324/9780203995549
  • KTU. (n.d.-a). Ders Kataloğu. Karadeniz Teknik Üniversitesi Mimarlık Fakültesi . Retrieved June 14, 2023, from https://katalog.ktu.edu.tr/DersBilgiPaketi/generalinfo.aspx?pid=586&lang=1
  • KTU. (n.d.-b). Sayısal Tasarım Araştırma ve Fabrikasyon Birimi. Karadeniz Technical University. Retrieved March 18, 2024, from https://www.ktu.edu.tr/ktucodefab
  • Kuhn, T. S. (1996). The Structure of Scientific Revolutions. University of Chicago Press.
  • LTU. (2024). LTU CoAD buildLab. https://www.ltu.edu/architecture-and-design/buildlab
  • Mao-Lin, C. (2006). The jump of digital design thinking: Overviews of Digital Architectural Design Education. CAADRIA Proceedings. https://papers.cumincad.org/data/works/att/caadria2006_027.content.pdf
  • Meister, A.-M. (2020). Ernst Neufert’s ‘Lebensgestaltungslehre’: formatting life beyond the built. BJHS Themes, 5, 167–185. https://doi.org/10.1017/bjt.2020.13
  • Menges, A., & Reichert, S. (2015). Performative wood: Physically programming the responsive architecture of the HygroScope and HygroSkin projects. Architectural Design, 85(5), 66–73. https://doi.org/10.1002/ad.1956
  • METU. (n.d.-a). Courses given by the Department of Architecture. Middle East Technical University. Retrieved February 8, 2023, from https://catalog.metu.edu.tr/prog_courses.php?prog=120
  • METU. (n.d.-b). Courses given by the Department of Architecture. Middle East Technical University. Retrieved February 8, 2023, from https://catalog.metu.edu.tr/prog_courses.php?prog=120
  • Mıhlayanlar, E., & Tachir, G. (2019). Mimarlık Eğitiminde Bilgisayar Destekli Tasarımdan Bina Enformasyonuna From Computer Aided Design to Building Information in Architecture Education. Artium, 7(2), 167–179.
  • Neufert, E. (1980). Architects’ Data Second (International) English Edition. In Blackwell Science Ltd.
  • Oktan, S., & Vural, S. (2022). Integrating Computational Fabrication Methods with Architectural Education. Journal of Computational Design, 3(2), 111–134. http://dx.doi.org/10.53710/jcode.1149803
  • Oxman, N., Laucks, J., Kayser, M., Duro-royo, J., & Gonzales-Uribe, C. (2014). Silk Pavilion : A Case Study in FIbre-Based Digital Fabrication. FABRICATE Conference Proceedings, 248–255.
  • Özkar, M. (2004). Uncertainties of reason: pragmatist plurality in basic design education.
  • Özkar, M. (2007). Learning by doing in the age of design computation. Computer-Aided Architectural Design Futures, CAADFutures 2007 - Proceedings of the 12th International CAADFutures Conference, 99–112. https://doi.org/10.1007/978-1-4020-6528-6_8
  • Paio, A., Eloy, S., Rato, V. M., Resende, R., & de Oliveira, M. J. (2012a). Prototyping Vitruvius, New Challenges: Digital Education, Research and Practice. Nexus Network Journal, 14(3), 409–429. https://doi.org/10.1007/s00004-012-0124-6
  • Paio, A., Eloy, S., Rato, V. M., Resende, R., & de Oliveira, M. J. (2012b). Prototyping Vitruvius, New Challenges: Digital Education, Research and Practice. Nexus Network Journal, 14(3), 409–429. https://doi.org/10.1007/s00004-012-0124-6
  • Piller, F. T. (2004). Mass Customization Reflections on the State of the Concept - 2005.pdf. The International Journal of Flexible Manufacturing Systems, 16, 313–334.
  • PlanFinder. (2024). Download. https://www.planfinder.xyz/download
  • Sehgal, V. (2015). Formative Studios in Architecture Design: Pedagogy Based on the Syntax. Creative Space, 3(1), 83–101. https://doi.org/10.15415/cs.2015.31007
  • Sharif, S., & Russell Gentry, T. (2015). Design cognition shift from craftsman to digital maker. CAADRIA 2015 - 20th International Conference on Computer-Aided Architectural Design Research in Asia: Emerging Experiences in the Past, Present and Future of Digital Architecture, August, 683–692.
  • Siebenbrodt, M., & Schöbe, L. (2009). Bauhaus 1919-1933 Weimar-Dessau-Berlin. Parkstone International.
  • Terzidis, K. (2003). Expressive form: A conceptual approach to computational design. In Expressive Form: A Conceptual Approach to Computational Design. https://doi.org/10.4324/9780203586891
  • Tseng, M. M., Jiao, J., & Merchant, M. E. (1996). Design for Mass Customization. CIRP Annals - Manufacturing Technology, 45(1), 153–156. https://doi.org/10.1016/S0007-8506(07)63036-4
  • Ünlü, E., & Alaçam, S. (2020). Formal Methods in Architecture. In S. Eloy, D. Leite Viana, F. Morais, & J. Vieira Vaz (Eds.), Formal Methods in Archtiecture. Proceedings of the 5th International Symposiıum on Formal Methods in Architecture. Springer International Publishing. https://doi.org/10.1007/978-3-030-57509-0
  • Uygun, E. (2013). an Integrated Approach for Technological Pedagogical Content (Issue September). METU.
  • Vural, S., Oktan, S., & Aydin, C. (2023). Interviewed by authors-02 January.
  • Yao, X., & Lin, Y. (2016). Emerging manufacturing paradigm shifts for the incoming industrial revolution. The International Journal of Advanced Manufacturing Technology, 85(5–8), 1665–1676. https://doi.org/10.1007/s00170-015-8076-0
  • Yazar, T. (2023). Interviewed by authors-13 Mart.
  • Yazar, T., Oral-Karakoç, H., Gündüz, G., & Yabanigül, M. N. (2023a). Integrating Robotic Fabrication into the Basic Design Studio. Nexus Network Journal, 25(4), 999–1013. https://doi.org/10.1007/s00004-023-00648-w
  • Yazar, T., Oral-Karakoç, H., Gündüz, G., & Yabanigül, M. N. (2023b). Integrating Robotic Fabrication into the Basic Design Studio. Nexus Network Journal, 25(4), 999–1013. https://doi.org/10.1007/s00004-023-00648-w
  • Yazici, S. (2020). Rule-based rationalization of form: learning by computational making. International Journal of Technology and Design Education, 30(3), 613–633. https://doi.org/10.1007/s10798-019-09509-5
  • Yıldırım, T., İnan, N., & Yavuz Özen, A. (2010). Mimari Tasarım Eğitiminde Bilişim Teknolojilerinin Kullanımı ve Etkileri. AB2010 Akademik Bilişim.
  • YU. (n.d.-a). Müfredat, Mimarlık Bölümü Ders Planı. Yaşar Üniversitesi. Retrieved December 8, 2023, from https://arch.yasar.edu.tr/ders-icerikleri/
  • YU. (n.d.-b). Müfredat, Mimarlık Bölümü Ders Planı. Yaşar Üniversitesi. Retrieved December 8, 2023, from https://arch.yasar.edu.tr/ders-icerikleri/
  • Zhang, Y., Xu, X., & Liu, Y. (2011). Numerical control machining simulation: A comprehensive survey. International Journal of Computer Integrated Manufacturing, 24(7), 593–609. https://doi.org/10.1080/0951192X.2011.566283
There are 78 citations in total.

Details

Primary Language English
Subjects Architectural Science and Technology, Architectural Design, Information Technologies in Architecture and Design
Journal Section RESEARCH ARTICLES
Authors

Kamile Öztürk Kösenciğ 0000-0002-7497-9261

Yağmur Burcu Güneş 0000-0003-1348-4430

Mehtap Özbayraktar 0000-0003-4460-4968

Early Pub Date September 21, 2024
Publication Date October 1, 2024
Submission Date July 8, 2024
Acceptance Date September 18, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Öztürk Kösenciğ, K., Güneş, Y. B., & Özbayraktar, M. (2024). INTEGRATION OF DIGITAL FABRICATION LABORATORIES AND COMPUTATIONAL DESIGN INTO THE ARCHITECTURE CURRICULUM IN TÜRKİYE. Turkish Online Journal of Design Art and Communication, 14(4), 902-918. https://doi.org/10.7456/tojdac.1512458


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png