BibTex RIS Cite

Probability density function estimation using Multi-layer perceptron

Year 2015, Volume: 5 Issue: 2, 54 - 63, 23.07.2016

Abstract

The problem of estimating a probability density function (pdf) can easily be encountered in many areas of experimental physics (high energy, spectroscopy, etc.) and other fields. The standard procedure is to bin the space and approximate the pdf by the ratio between the number of events falling inside each bin over the total and normalized to the bin volume. In this paper we estimate the univariate pdf using an MLP (Multi-Layer Perceptron) where the inputs are based on the exponential model. The proposed method is very effective and estimated densities are too close to some theoretical pdfs. Our method has been integrated in the famous steepest descent algorithm for marginal score functions estimation where two linearly mixed sources were successfully separated

References

  • Silverman, B.W. (1986), “ Density Estimation for Statistics and Data Analysis ”, Chapman & Hall.
  • Vogt, J. (2007), “ Basic Analysis Techniques & Multi-Spacecraft Data ”, 6th COSPAR Capacity Building Workshop (pp.4-16)., Sinaia.
  • Hwang, J. N., Lay, S. R., & Lippman A. , (1993), “Unsupervised learning for multivariate probability density estimation: Radial basis and projection pursuit,” IEEE Int. Conf Neural Networks (pp. 1486-1491), SanFrancisco, CA.
  • Popat, K. & Picard, R. W. (1993), “Novel cluster-based probability model for texture synthesis, classification,
  • and compression,” in Proc. SPIE Visual Commun. Image Processing’93, Boston, MA.
  • Popat, K. & Picard, R. W. (1994), “Cluster-based probability model applied to image restoration and compression,” in Proc. ICASSP, Adelaide, Australia.
  • Rabiner, L. R. (1989), “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2 (pp. 257-286).
  • Moody, J. & Darken, C. J. (1989), “Fast learning in networks of locally tuned processing units,” Neural Computation, vol. 1, no. 3 (pp. 281-294).
  • Svozil, D., Kvasnicka, V. & Pospichal, J. (1997), “ Introduction to Multi-Layer Feed-Forward Neural Networks ”, Chemometrics and Intelligent Laboratory Systems Vol.39 ( pp.43-62).
  • Modha, D.S. & Fainman, Y. (1994), “A learning law for density estimation,” IEEE Trans. On neural networks, Vol.5, no.3 (pp.519-523).
  • White, H. (1992), “Mathematical perspectives on Neural Networks”, M. Moser, D. Rumelhart (Eds).
  • Likas, A. (2001), “Probability density estimation using neural networks,” Computer Physics Communications, Vol. 135 (pp. 167-175).
  • Ould Mohamed, M.S. (2012), “Contribution à la separation aveugle de sources par utilisation des divergences entre densités de probabilité : application à l’analyse vibratoire,’’ thèse de doctorat de l’université de Reims Champagne – Ardenne.
  • Hyvärinen, A., Karhunen, J., & Oja, E. (2001), “Independent Component Analysis.” John Wiely & Sons.
  • Jutten, C. & Comon, P. (2007), "Séparation de sources – Tome2 : au-delà de l’aveugle et applications", chapitre 13 par Y. Deville. Collection "Traité IC2, Information - Commande -Communication", Hermès - Lavoisier, Paris.
  • Taleb, A. & Jutten, C. (1999), “Source separation in post nonlinear mixtures.” IEEE Transactions on Signal Processing, vol. 47, no. 10 (pp. 2807–2820).
Year 2015, Volume: 5 Issue: 2, 54 - 63, 23.07.2016

Abstract

References

  • Silverman, B.W. (1986), “ Density Estimation for Statistics and Data Analysis ”, Chapman & Hall.
  • Vogt, J. (2007), “ Basic Analysis Techniques & Multi-Spacecraft Data ”, 6th COSPAR Capacity Building Workshop (pp.4-16)., Sinaia.
  • Hwang, J. N., Lay, S. R., & Lippman A. , (1993), “Unsupervised learning for multivariate probability density estimation: Radial basis and projection pursuit,” IEEE Int. Conf Neural Networks (pp. 1486-1491), SanFrancisco, CA.
  • Popat, K. & Picard, R. W. (1993), “Novel cluster-based probability model for texture synthesis, classification,
  • and compression,” in Proc. SPIE Visual Commun. Image Processing’93, Boston, MA.
  • Popat, K. & Picard, R. W. (1994), “Cluster-based probability model applied to image restoration and compression,” in Proc. ICASSP, Adelaide, Australia.
  • Rabiner, L. R. (1989), “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2 (pp. 257-286).
  • Moody, J. & Darken, C. J. (1989), “Fast learning in networks of locally tuned processing units,” Neural Computation, vol. 1, no. 3 (pp. 281-294).
  • Svozil, D., Kvasnicka, V. & Pospichal, J. (1997), “ Introduction to Multi-Layer Feed-Forward Neural Networks ”, Chemometrics and Intelligent Laboratory Systems Vol.39 ( pp.43-62).
  • Modha, D.S. & Fainman, Y. (1994), “A learning law for density estimation,” IEEE Trans. On neural networks, Vol.5, no.3 (pp.519-523).
  • White, H. (1992), “Mathematical perspectives on Neural Networks”, M. Moser, D. Rumelhart (Eds).
  • Likas, A. (2001), “Probability density estimation using neural networks,” Computer Physics Communications, Vol. 135 (pp. 167-175).
  • Ould Mohamed, M.S. (2012), “Contribution à la separation aveugle de sources par utilisation des divergences entre densités de probabilité : application à l’analyse vibratoire,’’ thèse de doctorat de l’université de Reims Champagne – Ardenne.
  • Hyvärinen, A., Karhunen, J., & Oja, E. (2001), “Independent Component Analysis.” John Wiely & Sons.
  • Jutten, C. & Comon, P. (2007), "Séparation de sources – Tome2 : au-delà de l’aveugle et applications", chapitre 13 par Y. Deville. Collection "Traité IC2, Information - Commande -Communication", Hermès - Lavoisier, Paris.
  • Taleb, A. & Jutten, C. (1999), “Source separation in post nonlinear mixtures.” IEEE Transactions on Signal Processing, vol. 47, no. 10 (pp. 2807–2820).
There are 16 citations in total.

Details

Other ID JA56EU84NK
Journal Section Articles
Authors

Touba Mostefa Mohamed

Abdenacer Titaouine This is me

Touba Sonia This is me

Ouafae Bennis This is me

Publication Date July 23, 2016
Published in Issue Year 2015 Volume: 5 Issue: 2

Cite

APA Mohamed, T. M., Titaouine, A., Sonia, T., Bennis, O. (2016). Probability density function estimation using Multi-layer perceptron. TOJSAT, 5(2), 54-63.
AMA Mohamed TM, Titaouine A, Sonia T, Bennis O. Probability density function estimation using Multi-layer perceptron. TOJSAT. July 2016;5(2):54-63.
Chicago Mohamed, Touba Mostefa, Abdenacer Titaouine, Touba Sonia, and Ouafae Bennis. “Probability Density Function Estimation Using Multi-Layer Perceptron”. TOJSAT 5, no. 2 (July 2016): 54-63.
EndNote Mohamed TM, Titaouine A, Sonia T, Bennis O (July 1, 2016) Probability density function estimation using Multi-layer perceptron. TOJSAT 5 2 54–63.
IEEE T. M. Mohamed, A. Titaouine, T. Sonia, and O. Bennis, “Probability density function estimation using Multi-layer perceptron”, TOJSAT, vol. 5, no. 2, pp. 54–63, 2016.
ISNAD Mohamed, Touba Mostefa et al. “Probability Density Function Estimation Using Multi-Layer Perceptron”. TOJSAT 5/2 (July 2016), 54-63.
JAMA Mohamed TM, Titaouine A, Sonia T, Bennis O. Probability density function estimation using Multi-layer perceptron. TOJSAT. 2016;5:54–63.
MLA Mohamed, Touba Mostefa et al. “Probability Density Function Estimation Using Multi-Layer Perceptron”. TOJSAT, vol. 5, no. 2, 2016, pp. 54-63.
Vancouver Mohamed TM, Titaouine A, Sonia T, Bennis O. Probability density function estimation using Multi-layer perceptron. TOJSAT. 2016;5(2):54-63.