BibTex RIS Cite

Temperature Control in an Industrial SO2 Converter

Year 2014, Volume: 4 Issue: 4, 72 - 82, 23.07.2016

Abstract

This study addresses the problem of controlling the magnitude of the maximal catalyst temperature, or hot spot, in a four catalyst beds SO2 converter by manipulating the reaction mixture volumetric flow rate. The control of the maximal catalyst temperature is carried out in order to avoid the occurrence of a hot spot inside the catalyst mass and to keep high catalyst efficiency. Command algorithm used is the generalised predictive control (GPC) with off line process identification. The performance and robustness of the GPC controller are evaluated for the case of a kinetic complex and reversible exothermic reaction. The results obtained by numerical simulation show the possibility of the regulation of the hot spot temperature below a pre-specified value despite the occurrence of strong perturbations

References

  • Calderbank P. H. (1952). The mechanism of the catalytic oxidation of sulphur dioxide with a commercial vanadium catalyst: A kinetic study. J. App. Chem., 2(8), 482-492.
  • Cho C. K., Chang K. S., Cale T. S. (1993). Thermal runaway prevention in catalytic packed bed reactor by solid temperature measurement and control, Kor. J. Chem. Eng., 10(4), 195-202.
  • Christofides P. D., Daoutidis P. (1998). Robust control of hyperbolic PDE Systems, Chem. Eng. Sci. 53(1), 85
  • Clarke D. W., Mohtadi C., Tuffs P. S. (1987). Generalized predictive control - Part I. The basic algorithm, Automatica, 23(2), 137-148.
  • Dunn J. P., Stenger H. G. Jr,. Wachs I. E (1999). Oxidation of SO2 over supported metal oxide catalysts. J. Catalys. 181(2), 233-243.
  • Finalyson B. A. (1980). Non linear analysis in chemical engineering, McGraw-Hill New York.
  • Gosiewski K. (1993). Dynamic modelling of industrial SO2 oxidation reactors part I.model of 'hot' and 'cold' start-ups of the plant, Chem. Eng. Proces : Proces. Intensif, 32(2), 111-129.
  • Hua X., Jutan A. (2000). Nonlinear inferential cascade control of exothermic fixed-bed reactors, AIChE J. (5), 980-996.
  • Kolios, G., Frauhammer J., and Eigenberger G. (2000). Autothermal fixed –bed reactors concepts, Chem. Eng. Sci,. 55, 5945-5967.
  • Kozub D. J., Macgregor J. F., Wright J. D. (1987). Application of LQ and IMC controllers to a packed-bed reactor, AIChE J. 33 (9), 1496-1506.
  • Luyben W. L. (2007). Chemical reactor design and control, 2nd ed, John Wiley & sons, New Jersey.
  • Morud J., Skogestad S. (1993). The dynamics of chemical reactors with heat integration, paper presented at
  • AIChE Annual Meeting, St Louis, (paper 26e). Necati Özisik M. (1993). Heat conduction, 2nd ed, John Wiley & Sons New York.
  • Nodehi A., Mousavian M. A (2006). Simulation and Optimization of an Adiabatic Multi-Bed Catalytic Reactor for the Oxidation of SO2, Chem. Eng. Tech. 29(1), 84-90.
  • Oderwater D., Macgregor J. F, Wright J. D (1988). Use of nonlinear transformations and a self-tuning regulator to develop an algorithm for catalytic reactor temperature control, Can. J. Chem. Eng. 66, 478-484.
  • Patankar S. V. (1980). Numerical heat transfer and fluid flow, Hemisphere Washington DC.
  • Quina M. M. J., Qinta Ferreira R. M (2000). Start-up and wrong way behavior in a tubular reactor: dilution effect of the catalytic bed, Chem. Eng. Sci. 55, 3885-3897.
  • Toledo E. C. V., Morais E. R., Melo D. N. C, Mariano A. P.,Meyer J. F. C. A, Maciel Filho R. (2011). Suiting dynamics models of fixed bed catalytic reactors for computer based applications, Engineering, 3(7), 778-788.
  • Toledo E. C. V., Sanatana P. L., Wolf Maciel M. R., Maciel Filho R (2001). Dynamic modeling of a three-phase catalytic slurry reactor, Chem. Eng. Sci., 56, 6055-6061.
  • Trambouze P., Van Landeghem and H., Wauquier J. P. (1984). Les réacteurs chimiques conception /calcul /mise en œuvre, Technip, Paris.
  • Vanden Bussche K. M., Neophytides S. N., Zolotarski I. A., and Froment G. F., (1993). Modeling and simulation of the reversed flow operation of a fixed-bed reactor for methanol synthesis, Chem.Eng. Sci. 48, 3345.
  • Varma A., Morbidelli M., and Wu H. (1999). Parametric sensivity in chemical systems, Cambridge University Press.
  • Villermaux J. (1990). Génie de la réaction chimique, conception et fonctionnement des réacteurs, Lavoisier, Paris.
  • Wakao N., Kaguei S. (1982). Heat and mass transfer in packed beds, Gordon and Breach, London.
  • Xiao W. D., Wang H., Yuan W. K (1999). An SO2 converter with flow reversal and interstage heat removal : from laboratory to industry, Chem. Eng. Sci, 54, 1307-1311.
  • Yakhnin V. Z., Menzinger M. (1998). Resonance and moving hot spots in adiabatic packed bed, AIChE. J., 44, 1225.
Year 2014, Volume: 4 Issue: 4, 72 - 82, 23.07.2016

Abstract

References

  • Calderbank P. H. (1952). The mechanism of the catalytic oxidation of sulphur dioxide with a commercial vanadium catalyst: A kinetic study. J. App. Chem., 2(8), 482-492.
  • Cho C. K., Chang K. S., Cale T. S. (1993). Thermal runaway prevention in catalytic packed bed reactor by solid temperature measurement and control, Kor. J. Chem. Eng., 10(4), 195-202.
  • Christofides P. D., Daoutidis P. (1998). Robust control of hyperbolic PDE Systems, Chem. Eng. Sci. 53(1), 85
  • Clarke D. W., Mohtadi C., Tuffs P. S. (1987). Generalized predictive control - Part I. The basic algorithm, Automatica, 23(2), 137-148.
  • Dunn J. P., Stenger H. G. Jr,. Wachs I. E (1999). Oxidation of SO2 over supported metal oxide catalysts. J. Catalys. 181(2), 233-243.
  • Finalyson B. A. (1980). Non linear analysis in chemical engineering, McGraw-Hill New York.
  • Gosiewski K. (1993). Dynamic modelling of industrial SO2 oxidation reactors part I.model of 'hot' and 'cold' start-ups of the plant, Chem. Eng. Proces : Proces. Intensif, 32(2), 111-129.
  • Hua X., Jutan A. (2000). Nonlinear inferential cascade control of exothermic fixed-bed reactors, AIChE J. (5), 980-996.
  • Kolios, G., Frauhammer J., and Eigenberger G. (2000). Autothermal fixed –bed reactors concepts, Chem. Eng. Sci,. 55, 5945-5967.
  • Kozub D. J., Macgregor J. F., Wright J. D. (1987). Application of LQ and IMC controllers to a packed-bed reactor, AIChE J. 33 (9), 1496-1506.
  • Luyben W. L. (2007). Chemical reactor design and control, 2nd ed, John Wiley & sons, New Jersey.
  • Morud J., Skogestad S. (1993). The dynamics of chemical reactors with heat integration, paper presented at
  • AIChE Annual Meeting, St Louis, (paper 26e). Necati Özisik M. (1993). Heat conduction, 2nd ed, John Wiley & Sons New York.
  • Nodehi A., Mousavian M. A (2006). Simulation and Optimization of an Adiabatic Multi-Bed Catalytic Reactor for the Oxidation of SO2, Chem. Eng. Tech. 29(1), 84-90.
  • Oderwater D., Macgregor J. F, Wright J. D (1988). Use of nonlinear transformations and a self-tuning regulator to develop an algorithm for catalytic reactor temperature control, Can. J. Chem. Eng. 66, 478-484.
  • Patankar S. V. (1980). Numerical heat transfer and fluid flow, Hemisphere Washington DC.
  • Quina M. M. J., Qinta Ferreira R. M (2000). Start-up and wrong way behavior in a tubular reactor: dilution effect of the catalytic bed, Chem. Eng. Sci. 55, 3885-3897.
  • Toledo E. C. V., Morais E. R., Melo D. N. C, Mariano A. P.,Meyer J. F. C. A, Maciel Filho R. (2011). Suiting dynamics models of fixed bed catalytic reactors for computer based applications, Engineering, 3(7), 778-788.
  • Toledo E. C. V., Sanatana P. L., Wolf Maciel M. R., Maciel Filho R (2001). Dynamic modeling of a three-phase catalytic slurry reactor, Chem. Eng. Sci., 56, 6055-6061.
  • Trambouze P., Van Landeghem and H., Wauquier J. P. (1984). Les réacteurs chimiques conception /calcul /mise en œuvre, Technip, Paris.
  • Vanden Bussche K. M., Neophytides S. N., Zolotarski I. A., and Froment G. F., (1993). Modeling and simulation of the reversed flow operation of a fixed-bed reactor for methanol synthesis, Chem.Eng. Sci. 48, 3345.
  • Varma A., Morbidelli M., and Wu H. (1999). Parametric sensivity in chemical systems, Cambridge University Press.
  • Villermaux J. (1990). Génie de la réaction chimique, conception et fonctionnement des réacteurs, Lavoisier, Paris.
  • Wakao N., Kaguei S. (1982). Heat and mass transfer in packed beds, Gordon and Breach, London.
  • Xiao W. D., Wang H., Yuan W. K (1999). An SO2 converter with flow reversal and interstage heat removal : from laboratory to industry, Chem. Eng. Sci, 54, 1307-1311.
  • Yakhnin V. Z., Menzinger M. (1998). Resonance and moving hot spots in adiabatic packed bed, AIChE. J., 44, 1225.
There are 26 citations in total.

Details

Other ID JA56FS23UT
Journal Section Articles
Authors

Chaouki Bendjaoouahdou This is me

Mohamed Hadi Bendjaouahdou This is me

Publication Date July 23, 2016
Published in Issue Year 2014 Volume: 4 Issue: 4

Cite

APA Bendjaoouahdou, C., & Bendjaouahdou, M. H. (2016). Temperature Control in an Industrial SO2 Converter. TOJSAT, 4(4), 72-82.
AMA Bendjaoouahdou C, Bendjaouahdou MH. Temperature Control in an Industrial SO2 Converter. TOJSAT. July 2016;4(4):72-82.
Chicago Bendjaoouahdou, Chaouki, and Mohamed Hadi Bendjaouahdou. “Temperature Control in an Industrial SO2 Converter”. TOJSAT 4, no. 4 (July 2016): 72-82.
EndNote Bendjaoouahdou C, Bendjaouahdou MH (July 1, 2016) Temperature Control in an Industrial SO2 Converter. TOJSAT 4 4 72–82.
IEEE C. Bendjaoouahdou and M. H. Bendjaouahdou, “Temperature Control in an Industrial SO2 Converter”, TOJSAT, vol. 4, no. 4, pp. 72–82, 2016.
ISNAD Bendjaoouahdou, Chaouki - Bendjaouahdou, Mohamed Hadi. “Temperature Control in an Industrial SO2 Converter”. TOJSAT 4/4 (July 2016), 72-82.
JAMA Bendjaoouahdou C, Bendjaouahdou MH. Temperature Control in an Industrial SO2 Converter. TOJSAT. 2016;4:72–82.
MLA Bendjaoouahdou, Chaouki and Mohamed Hadi Bendjaouahdou. “Temperature Control in an Industrial SO2 Converter”. TOJSAT, vol. 4, no. 4, 2016, pp. 72-82.
Vancouver Bendjaoouahdou C, Bendjaouahdou MH. Temperature Control in an Industrial SO2 Converter. TOJSAT. 2016;4(4):72-8.