BibTex RIS Cite

Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes

Year 2013, Volume: 3 Issue: 2, 194 - 203, 23.07.2016

Abstract

The object of the present study was to produce bacterial cellulose (BC) membranes and studying the effect of carbon source, time and conditions of inoculation, type of alkali used for purification and the method of drying on its porosity and thickness of the resultant membranes. Acetobacter xylinum was isolated from local rotten juice, and used for membrane production. The highest porosity was attained when sucrose was used as a source of carbon compared to glucose, fructose and glycerol. However, fructose, glucose and glycerol resulted in higher pH value for the medium used as medium for bacterial growth. Using glycerol as the sole carbon source gave the highest bacterial cellulose and biomass (g/l) as compared to glucose, fructose and sucrose. Small inoculation led to high porosities and lowest thickness of the resultant membranes. Porosity of membranes was affected by the type of alkali used for the purification of the membranes. Application of K 2 CO 3 for purification gave the highest porosity while Na OH gave the lowest porosity. Hot air- drying of the membrane resulted in the lowest porosity as compared with freeze drying method which did not cause any damage to the porosity of the membrane

References

  • Vu, T. N. ; Bernadine, F.; Michael, J. G. and Gary, A. D. (2008). Characterization of cellulose production by a Gluconacetobacter xylinum strain from kombucha. Curr Microbiol, 57:449-453.
  • Jagannath, A. ;Kalaiselvan, A. ; Manjunatha, S. ;Raju, P. and Bawa, A. (2008). The effect of pH, sucrose and ammonium sulphate concentration on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World Microbiol Biotechnol.24:2593-2599.
  • White, D.G. and Brown, R.M.(1989). Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerech, C (ed) Cellulose and Wood-Chemistry and Technology. Wiley, New York.
  • Chao, Y.; Ishida, T.; Sugano, Y. and Shoda, M. (2000).Bacterial cellulose production by Acetobacter xylinum in 50 L internal- loop air lift reactor. Biotechnol.Bioeng.68;345-352.
  • Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J.P. and Osada, Y. (2008). Tubular bacterial cellulose gel with oriented ibrils on the curved surface. Polymer 49;1885-1991.
  • Denise, M.; Rosilene, A.; Adenise, L. and Gilvan, W. (2011). Application of bacterial cellulose conservation of minimally processed fruits. Revista Brasileira de Tecnologia Agroindustrial, 5(1):356- 366.
  • Marzieh, M. and Ali, Y. (2010). Investigation of physiochemical properties of the bacterial cellulose produced by Gluconacetobacter xylinum from date syrup. World Academy of Science, Engineering and Technology 68.
  • Li, M.; Tian, X. and Chen, X. (2009). Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication. Manuf. Sci. Eng. 131(3):34501-34505.
  • El-Saied, H; Ahmed, I.; Altaf, H.; Nagwa, A. and Dina, E. (2008). Production and characterization of economical bacterial cellulose.”Economical Bacterial Cellulose” Bio Resources, 3(4):1196-1217.
  • Sherif, K. and Kazuhiko, S. (2006).The utilization of sugar cane molasses with/without the presence of oligosulfonate for the production of bacterial cellulose. Appl. Microbiol. Biotechnol., 72:291-296.
  • Bäckdahl, H.; Helenius, G.; Bodin, A., Nannmark, U.; Johansson, B.R. and Risberg, B. (2006).
  • Mechanical properties of bacterial cellulose and interactions with smoth muscle cells. Biomaterial, 27(9):2141-2149.
  • Hei, CL. (1999). Reduced production of microbial cellolose caused by aggregation of Acetobacter xylinum under shaking culture conditions observation by scanning electron microscope. Applied Chemistry, 3:92-95.
  • Retegi, A.; Gabilondo, N.; Pena, C.; Zuluaga, R.; Castro, C.; Ganan, P. and Delacaba, K. (2010). Bacterial cellulose films with controlled microstructure- mechanical property relationships.Cellulose, 17:661-669.
  • Yamanaka, S.; Ishihara, M. and Sugiyama, J. (2000). Structural modification of bacterial cellulose. Cellulose, 7:312 – 225.
  • Pacheco, J. ; Yee, S. ; Zentella, M. and Marvan, E. (2004). Cellulosa bacteriana en Gluconacetobacter xylinum:Biosintesisy Aplicaciones. Revista Especializada en Ciencias Quimico – Biolōgicas, 7(1):18 - 25.
  • Yamanaka, S.;Watanabe, K. and Suzuki, Y. (1990). European patent 0,396,344A2.
  • Klemm, D.; Udhardt, U.; Marsch, S. and Schumann, D. (1999). ” BASYC – Bacterial synthesized cellulose: Miniaturized tubes for microsurgery”, Cellulose Polymer News, 24(11): 373 – 380.
  • Klemm, D.; Schumann D.; Udhardt U. and Marsch S.(2001).”Bacterial synthesized cellulose – artificial blood vessels for microsurgery” Progress in Polymer Science, 26(9):1561 – 1603.
  • Krystynowicz, A. and Bieleck, S. (2001). Biosynthesis of bacterial cellulose and it, s potential application in the different industries, Polish Biotetechnol. News, Copyright by Bio – Tech Consulting.
  • Luz, D.; Carreno, P.; Luis, A. and Alberto, C. (2006). Effect of culture and purification conditions on physicochemical and transport properties in bacterial cellulose membranes, Biomaterials, 27:145 – 151.
  • Kuan, C.; Jeffrey, M. and Ali, D. (2009) .Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16:1033 – 1045.
  • Kouda, T.; Yano, H. and Yoshinaga, F.(1997). Effect of agitator configuration bacterial cellulose productivity in aerated and agitated culture. J. Ferment. Bioeng., 83:371 – 376.
  • Marzieh, M. and Ali, R. (2010). Investigation of physicochemical properties of the bacterial cellulose by Gluconacetobacter xylinum from date syrup. World Academy of Science Engineering and Technology, 68:1248 – 1253.
  • Neelobon, S.; Jiraporn, B. and Suwannee, T. (2007). Effect of culture conditions on bacterial cellulose (BC) production from Acetobacter xylinum TISTR 976 and physical properties of BC parchment paper. Suranaree J. Sci.- Technol. 14(4):357
  • Jonas, R. and Farah, L.F. (1998) .Production and application of microbial cellulose. Polym Degrad Stab.59:101 – 106.
  • Jung, H.I; Jeong J.H ; Lee, O.M.; Park, G.T.; Kim, K.K.; Park, H.C; Lee, S.M.; Kim, Y.G. and Son, H.J. (2010) . Influence of glycerol on production and structural – physical properties of cellulose from Acetobacter sp.V6 cultured in shake flasks. Bioresour- Technol. 101: 3602-3608.
  • Nakai, T.; Tonouchi, N.; Konishi, T.; Kojima, Y.; Tsuchida, T. and Yoshinaga, F. (1999) . Enhancement of cellulose production by expression of sucrose synthetase in Acetobacter xylinum . Proc. Natl. Acad. Sci. USA, 96 (1):14 – 18.
  • Weihua, T.; Shiru, J.; Yuanyuan, J. and Hongjiang, Y. (2010) .The influence of fermentation condition and post – treatment methods on porosity of bacterial cellulose membrane. World J.Microbiol.Biotechnol.,26:125 – 131.
  • George, J.; Ramana, K.; Sabapathy, S. and Bawa, A. (2005). Physico- mechanical properties of chemically treated bacterial (Acetobacter xylinum) Cellulose membrane. World J. Microbiol. Biotechnol. 21: 1323 – 1327.
  • Brigid, A.; Deirdre, M.; Bernhard, W.; Michael, J. and Neal, W. (2009) .Mechanical and structural properties of native and alkali treated bacterial cellulose produced by Gluconacetobacter xylinum strain ATCC 53524.Cellulose. 16:1047 – 1055.
  • Marabi, A. and Saguy, I. (2004) . Effect of porosity on rehydration of dry food particulates. J. Sci. Food Agric., 84(10)1105 – 1110.
  • Svensson, A.; Nicklasson, E.; Harrah, T.; Paniaitis, B.and Kaplan, D.L. (2005) . Bacterial cellulose a potentiol scaffold for tissue engineering of cartilage. Biomaterials, 26:419 – 431.
  • Karathanos, VT.; Kanellopoulos, N.K.; Belessiotis, V.G. (1996). Development of porous structure during air drying of agricultural plant products. J. Food Eng., 29:167 – 183.
Year 2013, Volume: 3 Issue: 2, 194 - 203, 23.07.2016

Abstract

References

  • Vu, T. N. ; Bernadine, F.; Michael, J. G. and Gary, A. D. (2008). Characterization of cellulose production by a Gluconacetobacter xylinum strain from kombucha. Curr Microbiol, 57:449-453.
  • Jagannath, A. ;Kalaiselvan, A. ; Manjunatha, S. ;Raju, P. and Bawa, A. (2008). The effect of pH, sucrose and ammonium sulphate concentration on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World Microbiol Biotechnol.24:2593-2599.
  • White, D.G. and Brown, R.M.(1989). Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerech, C (ed) Cellulose and Wood-Chemistry and Technology. Wiley, New York.
  • Chao, Y.; Ishida, T.; Sugano, Y. and Shoda, M. (2000).Bacterial cellulose production by Acetobacter xylinum in 50 L internal- loop air lift reactor. Biotechnol.Bioeng.68;345-352.
  • Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J.P. and Osada, Y. (2008). Tubular bacterial cellulose gel with oriented ibrils on the curved surface. Polymer 49;1885-1991.
  • Denise, M.; Rosilene, A.; Adenise, L. and Gilvan, W. (2011). Application of bacterial cellulose conservation of minimally processed fruits. Revista Brasileira de Tecnologia Agroindustrial, 5(1):356- 366.
  • Marzieh, M. and Ali, Y. (2010). Investigation of physiochemical properties of the bacterial cellulose produced by Gluconacetobacter xylinum from date syrup. World Academy of Science, Engineering and Technology 68.
  • Li, M.; Tian, X. and Chen, X. (2009). Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication. Manuf. Sci. Eng. 131(3):34501-34505.
  • El-Saied, H; Ahmed, I.; Altaf, H.; Nagwa, A. and Dina, E. (2008). Production and characterization of economical bacterial cellulose.”Economical Bacterial Cellulose” Bio Resources, 3(4):1196-1217.
  • Sherif, K. and Kazuhiko, S. (2006).The utilization of sugar cane molasses with/without the presence of oligosulfonate for the production of bacterial cellulose. Appl. Microbiol. Biotechnol., 72:291-296.
  • Bäckdahl, H.; Helenius, G.; Bodin, A., Nannmark, U.; Johansson, B.R. and Risberg, B. (2006).
  • Mechanical properties of bacterial cellulose and interactions with smoth muscle cells. Biomaterial, 27(9):2141-2149.
  • Hei, CL. (1999). Reduced production of microbial cellolose caused by aggregation of Acetobacter xylinum under shaking culture conditions observation by scanning electron microscope. Applied Chemistry, 3:92-95.
  • Retegi, A.; Gabilondo, N.; Pena, C.; Zuluaga, R.; Castro, C.; Ganan, P. and Delacaba, K. (2010). Bacterial cellulose films with controlled microstructure- mechanical property relationships.Cellulose, 17:661-669.
  • Yamanaka, S.; Ishihara, M. and Sugiyama, J. (2000). Structural modification of bacterial cellulose. Cellulose, 7:312 – 225.
  • Pacheco, J. ; Yee, S. ; Zentella, M. and Marvan, E. (2004). Cellulosa bacteriana en Gluconacetobacter xylinum:Biosintesisy Aplicaciones. Revista Especializada en Ciencias Quimico – Biolōgicas, 7(1):18 - 25.
  • Yamanaka, S.;Watanabe, K. and Suzuki, Y. (1990). European patent 0,396,344A2.
  • Klemm, D.; Udhardt, U.; Marsch, S. and Schumann, D. (1999). ” BASYC – Bacterial synthesized cellulose: Miniaturized tubes for microsurgery”, Cellulose Polymer News, 24(11): 373 – 380.
  • Klemm, D.; Schumann D.; Udhardt U. and Marsch S.(2001).”Bacterial synthesized cellulose – artificial blood vessels for microsurgery” Progress in Polymer Science, 26(9):1561 – 1603.
  • Krystynowicz, A. and Bieleck, S. (2001). Biosynthesis of bacterial cellulose and it, s potential application in the different industries, Polish Biotetechnol. News, Copyright by Bio – Tech Consulting.
  • Luz, D.; Carreno, P.; Luis, A. and Alberto, C. (2006). Effect of culture and purification conditions on physicochemical and transport properties in bacterial cellulose membranes, Biomaterials, 27:145 – 151.
  • Kuan, C.; Jeffrey, M. and Ali, D. (2009) .Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16:1033 – 1045.
  • Kouda, T.; Yano, H. and Yoshinaga, F.(1997). Effect of agitator configuration bacterial cellulose productivity in aerated and agitated culture. J. Ferment. Bioeng., 83:371 – 376.
  • Marzieh, M. and Ali, R. (2010). Investigation of physicochemical properties of the bacterial cellulose by Gluconacetobacter xylinum from date syrup. World Academy of Science Engineering and Technology, 68:1248 – 1253.
  • Neelobon, S.; Jiraporn, B. and Suwannee, T. (2007). Effect of culture conditions on bacterial cellulose (BC) production from Acetobacter xylinum TISTR 976 and physical properties of BC parchment paper. Suranaree J. Sci.- Technol. 14(4):357
  • Jonas, R. and Farah, L.F. (1998) .Production and application of microbial cellulose. Polym Degrad Stab.59:101 – 106.
  • Jung, H.I; Jeong J.H ; Lee, O.M.; Park, G.T.; Kim, K.K.; Park, H.C; Lee, S.M.; Kim, Y.G. and Son, H.J. (2010) . Influence of glycerol on production and structural – physical properties of cellulose from Acetobacter sp.V6 cultured in shake flasks. Bioresour- Technol. 101: 3602-3608.
  • Nakai, T.; Tonouchi, N.; Konishi, T.; Kojima, Y.; Tsuchida, T. and Yoshinaga, F. (1999) . Enhancement of cellulose production by expression of sucrose synthetase in Acetobacter xylinum . Proc. Natl. Acad. Sci. USA, 96 (1):14 – 18.
  • Weihua, T.; Shiru, J.; Yuanyuan, J. and Hongjiang, Y. (2010) .The influence of fermentation condition and post – treatment methods on porosity of bacterial cellulose membrane. World J.Microbiol.Biotechnol.,26:125 – 131.
  • George, J.; Ramana, K.; Sabapathy, S. and Bawa, A. (2005). Physico- mechanical properties of chemically treated bacterial (Acetobacter xylinum) Cellulose membrane. World J. Microbiol. Biotechnol. 21: 1323 – 1327.
  • Brigid, A.; Deirdre, M.; Bernhard, W.; Michael, J. and Neal, W. (2009) .Mechanical and structural properties of native and alkali treated bacterial cellulose produced by Gluconacetobacter xylinum strain ATCC 53524.Cellulose. 16:1047 – 1055.
  • Marabi, A. and Saguy, I. (2004) . Effect of porosity on rehydration of dry food particulates. J. Sci. Food Agric., 84(10)1105 – 1110.
  • Svensson, A.; Nicklasson, E.; Harrah, T.; Paniaitis, B.and Kaplan, D.L. (2005) . Bacterial cellulose a potentiol scaffold for tissue engineering of cartilage. Biomaterials, 26:419 – 431.
  • Karathanos, VT.; Kanellopoulos, N.K.; Belessiotis, V.G. (1996). Development of porous structure during air drying of agricultural plant products. J. Food Eng., 29:167 – 183.
There are 34 citations in total.

Details

Other ID JA56NJ94GM
Journal Section Articles
Authors

Elham Esmaeel Al-shamary This is me

Amir Khalaf Al- Darwash This is me

Publication Date July 23, 2016
Published in Issue Year 2013 Volume: 3 Issue: 2

Cite

APA Al-shamary, E. . E., & Darwash, A. . K. . A.-. (2016). Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes. TOJSAT, 3(2), 194-203.
AMA Al-shamary EE, Darwash AKA. Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes. TOJSAT. July 2016;3(2):194-203.
Chicago Al-shamary, Elham Esmaeel, and Amir Khalaf Al- Darwash. “Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes”. TOJSAT 3, no. 2 (July 2016): 194-203.
EndNote Al-shamary EE, Darwash AKA- (July 1, 2016) Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes. TOJSAT 3 2 194–203.
IEEE E. . E. Al-shamary and A. . K. . A.-. Darwash, “Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes”, TOJSAT, vol. 3, no. 2, pp. 194–203, 2016.
ISNAD Al-shamary, Elham Esmaeel - Darwash, Amir Khalaf Al-. “Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes”. TOJSAT 3/2 (July 2016), 194-203.
JAMA Al-shamary EE, Darwash AKA-. Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes. TOJSAT. 2016;3:194–203.
MLA Al-shamary, Elham Esmaeel and Amir Khalaf Al- Darwash. “Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes”. TOJSAT, vol. 3, no. 2, 2016, pp. 194-03.
Vancouver Al-shamary EE, Darwash AKA-. Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes. TOJSAT. 2016;3(2):194-203.