BibTex RIS Cite

Removal of Cr(III) Ions from Tannery Waste Water Through Fungi

Year 2012, Volume: 2 Issue: 4, 74 - 78, 23.07.2016

Abstract

Cr(III) removal potential of a wood-rotting fungus viz., Ganoderma lucidum (Curt. Fr.) P. Karst was studied from tannery wastewater. Preliminary laboratory assays indicate an optimum pH, 4.5, stirring intensity 150 rpm with increase in removal rate on increasing initial metal ion concentration (4-20 mg L-1) in the medium. The maximum biosorption capacity of fungus biomass was 2.16 mg g-1 with suitability of Langmuir and Freundlich models on acquired experimental data. In tannery wastewater, fungus showed a maximum of 1.6 mg g-1 biosorption capacity and 43% efficiency. To make this technique practically applicable and economically feasible, the study was further extended by mass cultivated this fungus on agrowastes followed by assessment of its biosorption potency for Cr(III) ions. Rice straw colonized with G. lucidum mycelia could be utilized as an excellent biosorbent thus exhibited 73-76% efficiency for Cr(III) adsorption from tannery wastewater at low concentration of the metal (4-20 mg L-1)

References

  • American Public Health Association (APHA) (1995). Standard Method for the Examination of Water and Wastewater, American Water Work Association and Water Environment Federation 19th Ed.
  • Arica, M.Y., Arpa, C., & Kaya, B. (2003). Comparative biosorption of mercuric ions from aquatic systems by immobilized live and heat-inactivated Trametes versicolor and Pleurotus sajur-caju. Bioresource Technology, 89, 145-154.
  • Arica, M. Y., Bayramoglu, G., Yilmaz, M., Bektas, S., & Genc, O. (2004). Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. Journal of Hazardous Material, 109, 191-199.
  • Chergui, A., Bakhti, M. Z., Chahboub, A., Haddoum, S., Selatnia, A., & Junter, G. A. (2007). Simultaneous biosorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by Streptomyces rimosus biomass. Desalination, 20, 179-184.
  • Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146, 270-277.
  • Cossich, E. S., Tavares, C. R. G., & Ravagnani, T. M. K.. (2002). Biosorption of chromium(III) by Sargassum sp. biomass. Electronic Journal of Biotechnology, 5, 133-137.
  • Dursun, A.Y. (2006). A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochemical Engineering Journal, 28, 187-195.
  • El-Sayed. M., & El-Morsy, (2004) Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia, 96, 1183-1189.
  • Freundlich, H. M. F. (1906) Over the adsorption in solution. Journal of Physical Chemistry, 57, 385-470.
  • Gadd, G. M. (2001). Fungi in Bioremediation. Published by British Mycological Society. Cambridge University Press. Huang, C. P, & Huang, C. P. (1996). Application of Aspergillus oryzae and Rhizopus oryzae. Water Research, 30, 1985-1990.
  • Javaid, A., & Bajwa, R. (2008). A new approach of utilizing plant by-products colonized by fungal mycelia for sorption of industrial heavy metal ions. Pakistan Journal of Phytopathology, 20, 101-107.
  • Javaid, A., Bajwa, R., & Javaid, A. (2010). Biosorption of heavy metals using a Dead Macro Fungus: Evaluation of Equilibrium and Kinetic Models. Pakistan Journal of Botany, 42, 2105-2118.
  • Javaid, A., Bajwa, R., Shafique, U., & Anwar, J. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bienergy, 35, 1675-1682.
  • Langmuir, I. (1916) The constitution and fundamental properties of solids and liquids. Part. I: Solids. Journal of the American Chemical Society, 38, 2221-2295.
  • Lee, B. G., & Rowell, R. M. (2004). Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. Journal of Natural Fibers, 1, 97–108.
  • Loukidou, M. X., Zouboulis, A.I., Karapantsios, T. D., & Matis, K. A. (2004). Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 242, 93-104.
  • National Environmental Quality Standards for Municipal and Liquid Industrial Effluents NEQS. (1999) Pakistan. Paterson, R. R. (2006). "Ganoderma - a therapeutic fungal biofactory". Phytochemistry , 67, 1985-2001.
  • Subudhi, E., & Kar, R. N. (2008). Rhizopus arrhizus – An efficient fungus for copper effluent treatment. International journal of integrative Biology, 2, 166-171.
  • World Health Organization WHO. (2006) Guidelines for drinking-Water Quality. 3rd Eds.Vol 1.
Year 2012, Volume: 2 Issue: 4, 74 - 78, 23.07.2016

Abstract

References

  • American Public Health Association (APHA) (1995). Standard Method for the Examination of Water and Wastewater, American Water Work Association and Water Environment Federation 19th Ed.
  • Arica, M.Y., Arpa, C., & Kaya, B. (2003). Comparative biosorption of mercuric ions from aquatic systems by immobilized live and heat-inactivated Trametes versicolor and Pleurotus sajur-caju. Bioresource Technology, 89, 145-154.
  • Arica, M. Y., Bayramoglu, G., Yilmaz, M., Bektas, S., & Genc, O. (2004). Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. Journal of Hazardous Material, 109, 191-199.
  • Chergui, A., Bakhti, M. Z., Chahboub, A., Haddoum, S., Selatnia, A., & Junter, G. A. (2007). Simultaneous biosorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by Streptomyces rimosus biomass. Desalination, 20, 179-184.
  • Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146, 270-277.
  • Cossich, E. S., Tavares, C. R. G., & Ravagnani, T. M. K.. (2002). Biosorption of chromium(III) by Sargassum sp. biomass. Electronic Journal of Biotechnology, 5, 133-137.
  • Dursun, A.Y. (2006). A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochemical Engineering Journal, 28, 187-195.
  • El-Sayed. M., & El-Morsy, (2004) Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia, 96, 1183-1189.
  • Freundlich, H. M. F. (1906) Over the adsorption in solution. Journal of Physical Chemistry, 57, 385-470.
  • Gadd, G. M. (2001). Fungi in Bioremediation. Published by British Mycological Society. Cambridge University Press. Huang, C. P, & Huang, C. P. (1996). Application of Aspergillus oryzae and Rhizopus oryzae. Water Research, 30, 1985-1990.
  • Javaid, A., & Bajwa, R. (2008). A new approach of utilizing plant by-products colonized by fungal mycelia for sorption of industrial heavy metal ions. Pakistan Journal of Phytopathology, 20, 101-107.
  • Javaid, A., Bajwa, R., & Javaid, A. (2010). Biosorption of heavy metals using a Dead Macro Fungus: Evaluation of Equilibrium and Kinetic Models. Pakistan Journal of Botany, 42, 2105-2118.
  • Javaid, A., Bajwa, R., Shafique, U., & Anwar, J. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bienergy, 35, 1675-1682.
  • Langmuir, I. (1916) The constitution and fundamental properties of solids and liquids. Part. I: Solids. Journal of the American Chemical Society, 38, 2221-2295.
  • Lee, B. G., & Rowell, R. M. (2004). Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. Journal of Natural Fibers, 1, 97–108.
  • Loukidou, M. X., Zouboulis, A.I., Karapantsios, T. D., & Matis, K. A. (2004). Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 242, 93-104.
  • National Environmental Quality Standards for Municipal and Liquid Industrial Effluents NEQS. (1999) Pakistan. Paterson, R. R. (2006). "Ganoderma - a therapeutic fungal biofactory". Phytochemistry , 67, 1985-2001.
  • Subudhi, E., & Kar, R. N. (2008). Rhizopus arrhizus – An efficient fungus for copper effluent treatment. International journal of integrative Biology, 2, 166-171.
  • World Health Organization WHO. (2006) Guidelines for drinking-Water Quality. 3rd Eds.Vol 1.
There are 19 citations in total.

Details

Other ID JA56RD63JG
Journal Section Articles
Authors

Amna Shoaib This is me

Publication Date July 23, 2016
Published in Issue Year 2012 Volume: 2 Issue: 4

Cite

APA Shoaib, A. (2016). Removal of Cr(III) Ions from Tannery Waste Water Through Fungi. TOJSAT, 2(4), 74-78.
AMA Shoaib A. Removal of Cr(III) Ions from Tannery Waste Water Through Fungi. TOJSAT. July 2016;2(4):74-78.
Chicago Shoaib, Amna. “Removal of Cr(III) Ions from Tannery Waste Water Through Fungi”. TOJSAT 2, no. 4 (July 2016): 74-78.
EndNote Shoaib A (July 1, 2016) Removal of Cr(III) Ions from Tannery Waste Water Through Fungi. TOJSAT 2 4 74–78.
IEEE A. Shoaib, “Removal of Cr(III) Ions from Tannery Waste Water Through Fungi”, TOJSAT, vol. 2, no. 4, pp. 74–78, 2016.
ISNAD Shoaib, Amna. “Removal of Cr(III) Ions from Tannery Waste Water Through Fungi”. TOJSAT 2/4 (July 2016), 74-78.
JAMA Shoaib A. Removal of Cr(III) Ions from Tannery Waste Water Through Fungi. TOJSAT. 2016;2:74–78.
MLA Shoaib, Amna. “Removal of Cr(III) Ions from Tannery Waste Water Through Fungi”. TOJSAT, vol. 2, no. 4, 2016, pp. 74-78.
Vancouver Shoaib A. Removal of Cr(III) Ions from Tannery Waste Water Through Fungi. TOJSAT. 2016;2(4):74-8.