BibTex RIS Cite

ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ

Year 2005, Volume: 6 Issue: 2, 91 - 98, 05.08.2016

Abstract

Bu makalede, Çok Amaçlı Doğrusal Kesirli Programlama Probleminin uygun bölgesindeki, her doğrusal kesirli amaç fonksiyonunu optimal yapan noktalarda, kesirli lineer amaç fonksiyonları Taylor serisine açılarak, Çok Amaçlı Doğrusal Kesirli Programlama Problemi, Çok Amaçlı Doğrusal Programlama Problemine dönüştürül-müştür. Daha sonra da, doğrusal amaç fonksiyonlarının ağırlıkları dikkate alınarak, ağırlıklı toplamı bulunmuştur. Ardından, tek amaçlı doğrusal programlama problemi elde edilmiştir. Bu doğrusal programlama probleminin optimal çözümü, çok amaçlı doğrusal kesirli programlama probleminin etkin, hatta, kuvvetli etkin çözümlerini belirlemektedir. Önerilen çözümün etkinliğini göstermek için, örnek uygulamalar yapılmış olup, örneklerin çözümünde WinQSB bilgisayar paket programı kullanılmıştır.

References

  • KRABORTY M., GUPTA S, Fuzzy mathematical programming for multi objective linear CHA fractional programming problem, Fuzzy Sets and Systems 125: 335- 342, 2002.
  • CHARNES A,COOPER WW, Programming with linear fractional functionals, Nav. Research Logistics Quart. 9: 181-186,1962.
  • CHOO E.U, ATKINS DR, Bicriteria Linear fractional programming, J.Optim. Theory Applications. 36: 203-220,1982.
  • DUTTA D, TIWARI RN, RA theoretic approach, Fuzzy Sets and Systems 52: 39-45,1992.
  • GILMORE AC, GOMORY RE, A linear programming approach to the cutting stock problem II, Operational Research 11: 863-888,1963.
  • KORNBLUTH JSH, STEUER RE, Multiple Objective Linear Fractional Programming, Manage . Sci. 27: 1024-1039,1981.
  • LAI YJ, HWANG CL, Fuzzy Mu LUHANDJULA M.K, Fuzzy approaches for multiple objective linear fractional optimization, Fuzzy Sets and Systems 13, 11-23,1984.
  • MUNTEANU E, RADO I, Calculul, Sarjelar celor mai economice la cuptoarecle de topit fonta, studii si cercetari matematice , cluj, faseiola anexa XI, pp 149- ,1960. NYKO
  • O JR, Multiple objective linear fractional programming-A fuzzy set ltiple Objective Decision Making, Springer,1996.
  • WSKI I., ZOLKISKI Z., A compromise procedure for the multiple objective linear fractional programming problem, European J. Oper. Res. 19: 91-97,1985.
  • SENGUPTA A, PAL T.P., CHAKRABORTY M., Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming, Fuzzy Sets and Systems 119: 129-138,2001.
  • ZIONTS S, Programming with linear fractional functionals, Nav. Res. Logistics Quart. 15 : 449-451,1968.
  • CHANG,Y-L, WinQSB, Version 1.0 for Windows, Wiley, 2001.

TAYLOR SERIES SOLUTION OF MULTI OBJECTIVE LINEAR FRACTIONAL PROGRAMMING PROBLEM

Year 2005, Volume: 6 Issue: 2, 91 - 98, 05.08.2016

Abstract

In this paper, we have proposed a solution to Multi Objective Linear Fractional Programming Problem (MOLFPP) by expanding the order 1st Taylor polynomial series these objective functions at optimal points of each linear fractional objective functions in feasible region. MOLFPP reduces to an equivalent Multi Objective Linear Programming Problem (MOLPP). The resulting MOLPP is solved assuming that weights of these linear objective functions are equal and considering the sum of the these linear objective functions. The proposed solution to MOLFPP always yields efficient solution, even a strong-efficient solution. Therefore, the complexity in solving MOLFPP has reduced easy computational. To show the ability the proposed solution, three different numerical examples have been presented. The given examples are solved using optimization software WINQSB (Chang, 2001).

References

  • KRABORTY M., GUPTA S, Fuzzy mathematical programming for multi objective linear CHA fractional programming problem, Fuzzy Sets and Systems 125: 335- 342, 2002.
  • CHARNES A,COOPER WW, Programming with linear fractional functionals, Nav. Research Logistics Quart. 9: 181-186,1962.
  • CHOO E.U, ATKINS DR, Bicriteria Linear fractional programming, J.Optim. Theory Applications. 36: 203-220,1982.
  • DUTTA D, TIWARI RN, RA theoretic approach, Fuzzy Sets and Systems 52: 39-45,1992.
  • GILMORE AC, GOMORY RE, A linear programming approach to the cutting stock problem II, Operational Research 11: 863-888,1963.
  • KORNBLUTH JSH, STEUER RE, Multiple Objective Linear Fractional Programming, Manage . Sci. 27: 1024-1039,1981.
  • LAI YJ, HWANG CL, Fuzzy Mu LUHANDJULA M.K, Fuzzy approaches for multiple objective linear fractional optimization, Fuzzy Sets and Systems 13, 11-23,1984.
  • MUNTEANU E, RADO I, Calculul, Sarjelar celor mai economice la cuptoarecle de topit fonta, studii si cercetari matematice , cluj, faseiola anexa XI, pp 149- ,1960. NYKO
  • O JR, Multiple objective linear fractional programming-A fuzzy set ltiple Objective Decision Making, Springer,1996.
  • WSKI I., ZOLKISKI Z., A compromise procedure for the multiple objective linear fractional programming problem, European J. Oper. Res. 19: 91-97,1985.
  • SENGUPTA A, PAL T.P., CHAKRABORTY M., Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming, Fuzzy Sets and Systems 119: 129-138,2001.
  • ZIONTS S, Programming with linear fractional functionals, Nav. Res. Logistics Quart. 15 : 449-451,1968.
  • CHANG,Y-L, WinQSB, Version 1.0 for Windows, Wiley, 2001.
There are 13 citations in total.

Details

Other ID JA55SE86ED
Journal Section Articles
Authors

Nuran Güzel This is me

Mustafa Sivri This is me

Publication Date August 5, 2016
Published in Issue Year 2005 Volume: 6 Issue: 2

Cite

APA Güzel, N., & Sivri, M. (2016). ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ. Trakya Üniversitesi Fen Bilimleri Dergisi, 6(2), 91-98.
AMA Güzel N, Sivri M. ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ. Trakya Univ J Sci. August 2016;6(2):91-98.
Chicago Güzel, Nuran, and Mustafa Sivri. “ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ”. Trakya Üniversitesi Fen Bilimleri Dergisi 6, no. 2 (August 2016): 91-98.
EndNote Güzel N, Sivri M (August 1, 2016) ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ. Trakya Üniversitesi Fen Bilimleri Dergisi 6 2 91–98.
IEEE N. Güzel and M. Sivri, “ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ”, Trakya Univ J Sci, vol. 6, no. 2, pp. 91–98, 2016.
ISNAD Güzel, Nuran - Sivri, Mustafa. “ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ”. Trakya Üniversitesi Fen Bilimleri Dergisi 6/2 (August 2016), 91-98.
JAMA Güzel N, Sivri M. ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ. Trakya Univ J Sci. 2016;6:91–98.
MLA Güzel, Nuran and Mustafa Sivri. “ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ”. Trakya Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, 2016, pp. 91-98.
Vancouver Güzel N, Sivri M. ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA PROBLEMİNİN TAYLOR SERİSİYLE ÇÖZÜMÜ. Trakya Univ J Sci. 2016;6(2):91-8.