BibTex RIS Cite

BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ

Year 2011, Volume: 12 Issue: 1, 9 - 21, 05.08.2016

Abstract

Türkiye Taşkömürü Kurumu (TTK), taşkömürü üretiminde, ağırlıklı olarak 17 tonluk EIMCO akülü ocak lokomotiflerini kullanmakta ve üretim aşamasında sıklıkla mil yenilmesi sorunları ile karşılaşmaktadır. Sorunun kaynağının belirlenmesi amacı ile yeraltında, yer ve hacim darlığı, yer altı şartları ve güvenlik gibi nedenlerle lokomotif üzerinde çeşitli test ve analizlerin yapılması, yeni düzenlemelerin yapılarak test edilmesi, oldukça güç kimi zaman imkansız bir noktaya gelmektedir. Bu durumda ocak lokomotif ve vagonları için, bir sanal prototipinin hazırlanması, çeşitli işletme koşulları altında denemeler yapılabilmesine ve ortaya çıkan sonuçların değerlendirilmesine imkan vermektedir. Bu çalışmada, Automatic Dynamic Analysis of Mechanical Systems (ADAMS) dinamik simülasyon yazılımı ile birlikte demiryolları taşıtları için özel olarak hazırlanmış ADAMS/Rail modülü kullanılarak, EIMCO akülü ocak lokomotifleri ve çektiği vagonlar için bir sanal prototip modeli oluşturulmuştur. Sanal modelden elde edilen verilerin doğruluğunun sınanması amacı ile, lokomotif mil yatakları üzerinde oluşan kuvvetler, belirlenen çalışma şartları için ölçülmüş ve modelden elde edilen veriler ile karşılaştırılmıştır. Karşılaştırma sonuçunda deneysel veriler ile uyumluluk görülmüştür

References

  • 1. Ambrosio, J, Train kinematics for the design of railway vehicle components, Mechanism and Machine Theory, 45 (8) 1035-1049 (2010).
  • 2. Auciello, J; Meli, E; Falomi, S; Malvezzi, M, Dynamic simulation of railway vehicles: wheel/rail contact analysis, Vehicle System Dynamics, 47(7): 867-899 (2009).
  • 3. Ekmekci, N; Ocak lokomotiflerinde tahrik mili yenilme nedenlerinin incelenmesi, Doktora tezi (yayımlanmış), Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, Zonguldak, 117s, (2009)
  • 4. Eom, BG; Lee, HS, Assessment of Running Safety of Railway Vehicles using Multibody Dynamics, International Journal of Precision Engineering and Manufacturing, 11 (2), 315-320 (2010).
  • 5. Facchinetti, A; Mazzola, L; Alfi, S; Bruni, S, Mathematical modelling of the secondary airspring suspension in railway vehicles and its effect on safety and ride comfort, Vehicle System Dynamics, 48 (Suppl.1) 429-449 (2010).
  • 6. Hung, C; Suda, Y; Aki, M; Tsuji, T; Morikawa, M; Yamashita, T; Kawanabe T; Kunimi T, Study on detection of the early signs of derailment for railway vehicles, Vehicle System Dynamics, 48 (Suppl.1) 451-466 (2010).
  • 7. Kovalev, R; Lysikov, N; Mikheev, G; Pogorelov, D; Simonov, V; Yazykov, V; Zakharov S; Zharov I; Goryacheva I; Soshenkov S; Torskaya E, Freight car models and their computer-aided dynamic analysis, Multibody System Dynamics, 22 (4) 399-423 (2009).
  • 8. Luber, B; Haigermoser, A; Grabner, G, Track geometry evaluation method based on vehicle response prediction , Vehicle System Dynamics 48 (Suppl.1) 157-173 (2010).
  • 9. Meli E, Malvezzi M, Papini S, Pugi L; Rinchi M; Rindi A, A railway vehicle multibody model for real-time applications, Vehicle System Dynamics 46(12) 1083-1105 (2008).
  • 10. Nishimura, K; Terumichi, Y; Morimura, T; Sogabe K, Development of Vehicle Dynamics Simulation for Safety Analyses of Rail Vehicles on Excited Tracks, Journal of Computational and Nonlinear Dynamics, 4 (1) No. 011001 (2009).
  • 11. Pacchioni, A; Goodall, RM; Bruni, S, Active suspension for a two-axle railway vehicle, Vehicle System Dynamics, 48 (Suppl.1) 105-120 (2010).
  • 12. Pombo, J; Ambrosio, J; Pereira, M; Lewis, R; Dwyer-Joyce, R; Ariaudo, C; Kuka, N, A study on wear evaluation of railway wheels based on multibody dynamics and wear computation, Multibody System Dynamics, 24 (3): 347-366 (2010).
  • 13. Tomioka, T; Takigami, T, Reduction of bending vibration in railway vehicle carbodies using carbody– bogie dynamic interaction, Vehicle System Dynamics, 48 (Suppl.1) 467-486 (2010).
  • 14. TTK (2007), TTK’da Kullanılan Lokomotifler, TTK APK Başkanlığı
  • 15. Wang, W; Li, GX, Development of a simulation model of a high-speed vehicle for a derailment mechanism, Proceedings of The Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 224 (F2): 103-113 (2010).
  • 16. Yoon, JW; Jung, SP; Park, TW; Park, JK, Fatigue analysis of the main frame of over head transportation vehicles using flexible multibody dynamics, Journal of Mechanical Science and Technology, 24(3) 721-730 (2010).
  • 17. Zakeri, JA; Xia, H; Fan, JJ, Dynamic responses of train-track system to single rail irregularity, Latin American Journal of Solids and Structures, 6(2) 89-104 (2009).
  • 18. Zhai, WM; Wang, KY; Cai, CB, Fundamentals of vehicle-track coupled dynamics, Vehicle System Dynamics, 47(11) 1349-1376 (2009).

A Virtual Prototype of One Mine Locomotive

Year 2011, Volume: 12 Issue: 1, 9 - 21, 05.08.2016

Abstract

Turkish Hard Coal Enterprise (TTK), uses 17 tones Eimco battery locomotives in production of coal and exposes the fatigue failures in driving shafts during operation. It is difficult and sometimes impossible to make analysis and testes on mine locomotives, tested by new arrangement to determine the cause of problem due to lack of field and volume, underground condition and security. So, it is possible to make testes for some operating condition and evaluation of results by developing a virtual prototype of locomotive and wagons. In this study, a virtual prototype of Eimco battery locomotive and wagons is developed by using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) with ADAMS Rail module for railway vehicles. Bearing loads are evaluated for certain operating condition and compare with models data to examine. Results come to an agreement with experimental data

References

  • 1. Ambrosio, J, Train kinematics for the design of railway vehicle components, Mechanism and Machine Theory, 45 (8) 1035-1049 (2010).
  • 2. Auciello, J; Meli, E; Falomi, S; Malvezzi, M, Dynamic simulation of railway vehicles: wheel/rail contact analysis, Vehicle System Dynamics, 47(7): 867-899 (2009).
  • 3. Ekmekci, N; Ocak lokomotiflerinde tahrik mili yenilme nedenlerinin incelenmesi, Doktora tezi (yayımlanmış), Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, Zonguldak, 117s, (2009)
  • 4. Eom, BG; Lee, HS, Assessment of Running Safety of Railway Vehicles using Multibody Dynamics, International Journal of Precision Engineering and Manufacturing, 11 (2), 315-320 (2010).
  • 5. Facchinetti, A; Mazzola, L; Alfi, S; Bruni, S, Mathematical modelling of the secondary airspring suspension in railway vehicles and its effect on safety and ride comfort, Vehicle System Dynamics, 48 (Suppl.1) 429-449 (2010).
  • 6. Hung, C; Suda, Y; Aki, M; Tsuji, T; Morikawa, M; Yamashita, T; Kawanabe T; Kunimi T, Study on detection of the early signs of derailment for railway vehicles, Vehicle System Dynamics, 48 (Suppl.1) 451-466 (2010).
  • 7. Kovalev, R; Lysikov, N; Mikheev, G; Pogorelov, D; Simonov, V; Yazykov, V; Zakharov S; Zharov I; Goryacheva I; Soshenkov S; Torskaya E, Freight car models and their computer-aided dynamic analysis, Multibody System Dynamics, 22 (4) 399-423 (2009).
  • 8. Luber, B; Haigermoser, A; Grabner, G, Track geometry evaluation method based on vehicle response prediction , Vehicle System Dynamics 48 (Suppl.1) 157-173 (2010).
  • 9. Meli E, Malvezzi M, Papini S, Pugi L; Rinchi M; Rindi A, A railway vehicle multibody model for real-time applications, Vehicle System Dynamics 46(12) 1083-1105 (2008).
  • 10. Nishimura, K; Terumichi, Y; Morimura, T; Sogabe K, Development of Vehicle Dynamics Simulation for Safety Analyses of Rail Vehicles on Excited Tracks, Journal of Computational and Nonlinear Dynamics, 4 (1) No. 011001 (2009).
  • 11. Pacchioni, A; Goodall, RM; Bruni, S, Active suspension for a two-axle railway vehicle, Vehicle System Dynamics, 48 (Suppl.1) 105-120 (2010).
  • 12. Pombo, J; Ambrosio, J; Pereira, M; Lewis, R; Dwyer-Joyce, R; Ariaudo, C; Kuka, N, A study on wear evaluation of railway wheels based on multibody dynamics and wear computation, Multibody System Dynamics, 24 (3): 347-366 (2010).
  • 13. Tomioka, T; Takigami, T, Reduction of bending vibration in railway vehicle carbodies using carbody– bogie dynamic interaction, Vehicle System Dynamics, 48 (Suppl.1) 467-486 (2010).
  • 14. TTK (2007), TTK’da Kullanılan Lokomotifler, TTK APK Başkanlığı
  • 15. Wang, W; Li, GX, Development of a simulation model of a high-speed vehicle for a derailment mechanism, Proceedings of The Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 224 (F2): 103-113 (2010).
  • 16. Yoon, JW; Jung, SP; Park, TW; Park, JK, Fatigue analysis of the main frame of over head transportation vehicles using flexible multibody dynamics, Journal of Mechanical Science and Technology, 24(3) 721-730 (2010).
  • 17. Zakeri, JA; Xia, H; Fan, JJ, Dynamic responses of train-track system to single rail irregularity, Latin American Journal of Solids and Structures, 6(2) 89-104 (2009).
  • 18. Zhai, WM; Wang, KY; Cai, CB, Fundamentals of vehicle-track coupled dynamics, Vehicle System Dynamics, 47(11) 1349-1376 (2009).
There are 18 citations in total.

Details

Other ID JA56AE63AH
Journal Section Articles
Authors

Nihal Ekmekci This is me

Nuri Ali Akçın This is me

Publication Date August 5, 2016
Published in Issue Year 2011 Volume: 12 Issue: 1

Cite

APA Ekmekci, N., & Akçın, N. A. (2016). BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ. Trakya Üniversitesi Fen Bilimleri Dergisi, 12(1), 9-21.
AMA Ekmekci N, Akçın NA. BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ. Trakya Univ J Sci. August 2016;12(1):9-21.
Chicago Ekmekci, Nihal, and Nuri Ali Akçın. “BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ”. Trakya Üniversitesi Fen Bilimleri Dergisi 12, no. 1 (August 2016): 9-21.
EndNote Ekmekci N, Akçın NA (August 1, 2016) BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ. Trakya Üniversitesi Fen Bilimleri Dergisi 12 1 9–21.
IEEE N. Ekmekci and N. A. Akçın, “BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ”, Trakya Univ J Sci, vol. 12, no. 1, pp. 9–21, 2016.
ISNAD Ekmekci, Nihal - Akçın, Nuri Ali. “BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ”. Trakya Üniversitesi Fen Bilimleri Dergisi 12/1 (August 2016), 9-21.
JAMA Ekmekci N, Akçın NA. BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ. Trakya Univ J Sci. 2016;12:9–21.
MLA Ekmekci, Nihal and Nuri Ali Akçın. “BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ”. Trakya Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 1, 2016, pp. 9-21.
Vancouver Ekmekci N, Akçın NA. BİR OCAK LOKOMOTİFİNİN SANAL PROTOTİP MODELİ. Trakya Univ J Sci. 2016;12(1):9-21.