BibTex RIS Cite

Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem

Year 2013, , - , 01.08.2013
https://doi.org/10.4194/1303-2712-v13_4_03

Abstract

In the present study, a model of the lower-trophic pelagic food web of the Black Sea is considered in order to provide a quantitative understanding of the marked changes in the food web structure in response to changing top-down and bottom-up control mechanisms due to eutrophication, overfishing, and climatic changes. The simulations consider three particular parameters controlling the changes in the ecosystem structure due to these stressors; (i) the magnitude of the nitrate flux into the euphotic layer from the chemocline layer (enrichment due to eutrophication), (ii) the magnitude of predation control introduced by the planktivorous fish on mesozooplankton (fishery), (iii) the magnitude of the Q parameter controlling temperature dependence of the Mnemiopsis growth (changing climatic conditions). A simulation assessing the level of enrichment on the ecosystem indicates a shift of the major trophic energy flow towards Noctiluca and Aurelia and thus showing how the ecosystem would degrade when a critical level of enrichment is passed. Increasing predation pressure of the planktivorous fish during the enrichment phase is shown to reduce the mesozooplankton biomass that in turn declines its predation pressure on Noctiluca population and thus allows Noctiluca biomass to increase, considering that mesozooplanton is assumed to feed on Noctiluca (at a level of 15% food preference) in the current model.. Noctiluca then acts as a major consumer and a critical element of the degraded food web structure. The overfishing of planktivorous fish stocks allows Mnemiopsis biomass to increase considerably under changing (warmer) climatic conditions at the end of 1980s, following a decade-long intense cooling phase. Thus, our results suggest that overfishing would not alone be able to promote a Mnemiopsis population outburst in the absence of warming.

References

  • BSC 2008. State of the Environment of the Black Sea (2001-2006/7), Oguz T 391 (ed) The Commission on the Protection of the Black Sea Against Pollution publication, 392 448 pp.
  • Daskalov G.M., Grishin A.N., Rodianov S., Mihneva V. 200 Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc Natl Acad Sci USA 104:10518–10523
  • Dorofeyev, V. L., Oguz, T., Sukhikh, L. I., Knysh, V. V., Kubryakov, A. I., and Korotaev, G. K. 20 Modeling long-term changes of the Black Sea ecosystem characteristics, Ocean Sci. Discuss., 9, 2039-2080, doi:10.5194/osd-9-2039-2012, 2012.
  • Edwards, A.M. 2001. Adding detritus to a nutrientphytoplankton-zooplankton model: a dynamicalsystems approach. Journal of Plankton Research, 23(4): 389-413. doi: 10.1093/plankt/23.4.389
  • Elbrachter M., Qi Z. (1998) Aspects of Noctiluca (Dinophyceae) population dynamics. In: M. Anderson, D. Cembella & M. Hallegraeff (Eds). Physiological ecology of harmful algal blooms: 3153
  • Fulton, E.A., Smith, A.D.M. and Johnson, C.R. 2003. Mortality and predation in ecosystem models: is it important how these are expressed? Ecological Model-ling, 169: 157–178. doi: 10.1016/S03043800(03)00268-0
  • Gentleman, W., Leising, A., Frost, B., Strom, S. and Murray, J. 200 Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Research II, 50: 2847–2875. doi: 1016/j.dsr2.2003.07.001
  • Gibson, G.A., Musgrave, D.L. and Hinckley, S., 2005. Nonlinear dynamics of a pelagic ecosystem model with multiple predator and prey types. Journal of Plankton Research, 27(5): 427–447. doi: 10.1093/plankt/fbi016 Gregoire M., Lacroix G. 2003. Exchange processes and nitrogen cycling on the shelf and continental slope of the Black Sea basin. Global Biogeochememical Cycles, 17:1072.
  • Grégoire M., Friedrich J. 2004. Nitrogen budget of the north-western black sea shelf as inferred from modeling studies and in-situ benthic measurements. Mar. Ecol. Prog. Ser., 270:15–39.
  • Gregoire M., Soetaert K., Nezlin N., Kostianoy A. 2004. Modeling the nitrogen cycling and plankton productivity in the Black Sea using a threedimensional interdisciplinary model. J. Geophys. Res., 109, C05007, doi:10.1029/2001JC001014.
  • Gregoire M., Raick C., Soetaert K. 2008. Numerical modeling of the deep black sea ecosystem functioning during the late 1980s (eutrophication phase). Progress in Oceanography, 76:286–333.
  • Kemp, W.M., Brooks, M.T. and Hood, R.R., 2001. Nutrient enrichment, habitat variability and trophic transfer efficiency in simple models of pelagic ecosystems. Marine Ecology Progress Series, 223: 73–87. doi: 3354/meps223073
  • Korotaev, G.K., Oguz, T., Dorofeyev, V.L., Demyshev, S.G., Kubryakov, A.I. and Ratner, Y.B. 2001. Development of Black Sea nowcasting and forecasting system. Ocean Sci., 7, 629-649.
  • Lancelot C., Staneva J., Van Eeckhout D., Beckers J.M., Stanev E. 2002. Modeling the impact of the human forcing on the ecological functioning of the northwestern Black Sea, Estuarine. Coastal and Shelf Science, 54:473-500.
  • Lima, I.D., Olson, D.B. and Doney, S.C. 2002. Intrinsic dynamics and stability properties of size-structured pelagic ecosystem models. Journal of Plankton Research, 24: 533–556. doi: 10.1093/plankt/24.6.533
  • Mee L.D., Friedrich J., Gomoiu M.T. 2005. Restoring the Black Sea in times of uncertainty. Oceanography (Wash DC) 18:32 – 43
  • Miyaguci, H.; Fujiki, T.; Kikuci, T. Et al. Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res., v. 28, n. 3, p. 313-324, 200 Morozov, A.Y., Nezlin, N.P. and Petrovskii, S.V. 2005. Invasion of a top predator into an epipelagic ecosystem can bring a paradoxical top-down trophic control. Biological Invasions 7: 845–861. doi: 1007/s10530-005-5213-y
  • Oguz T., Ducklow J., Malanotte-Rizzoli P. 2000. Modeling distinct vertical biogeochemical structure of the Black Sea: dynamical coupling of the oxic, suboxic, and anoxic layers. Global Biogeochemical Cycles, 14 (4):1331–1352.
  • Oguz, T., Salihoglu, B. 2000. Simulation of eddy-driven phy- toplankton production in the Black Sea. Geophys. Res. Lett. 27 (14), 2125–2128.
  • Oguz T, Ducklow J, Purcell J, Malanotte-Rizzoli P. 2001a. Modeling the response of top-down control exerted by gelatinous carnivores on the black sea pelagic food web. J. Geophys. Res., 106(C3):4543–4564.
  • Oguz T., Malanotte-Rizzoli P., Ducklow H.W. 2001b. Simulations of phytoplankton seasonal cycle with multi-level and multi-layer physical-ecosystem models: The Black Sea example. Ecological Modelling, 144:295-314.
  • Oguz T., Merico A. 2006. Factors controlling the summer Emiliania huxleyi bloom in the Black Sea: a modeling study. J. Marine Systems, 59:173-188.
  • Oguz T., Salihoglu, B., Fach, B. 2008a. A coupled plankton–anchovy population dynamics model assessing nonlinear controls of anchovy and gelatinous biomass in the Black Sea. Mar. Ecol. Prog. Ser. 369: 229–256
  • Oguz T., Fach B., Salihoglu B. 2008b. Invasion dynamics of the alien ctenophore Mnemiopsis leidyi and its impact on anchovy collapse in the Black Sea. J Plankton Res 30(12): 13851397
  • Oguz T., Velikova V. 2010. Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Mar. Ecol. Prog. Ser., 405:231–242.
  • Oguz T., Akoglu E., Salihoglu B. 2012a. Current state of overfishing and its regional differences in the Black Sea. Ocean and Coastal Management, 58:47-56.
  • Nesterova D.A., Moncheva S., Mikaelyan A., Vershinin A. and others 2008. The state of phytoplankton. In: Oguz T (ed) State of the environment of the Black Sea (2001–2006/7). The Commission on the Protection of the Black Sea Against Pollution publication, Istanbul, p 173–200
  • Niiler, P.P., Kraus, E.B., 1977. One dimensional models of the upper ocean. In: Kraus, E.B. (Ed.), Modelling and Predic- tion of the Upper Layers of the Ocean. Pergamon Press, New York, pp. 143–172.
  • Salihoglu, B. (1998) Three-layer model of plankton productivity in the Black Sea basin. M.Sc. Thesis. Institute of Marine Sciences, Middle East Technical University, Turkey, 92 pp.
  • Zaitsev Y.P. 1992. Recent changes in the trophic structure of the Black Sea. Fish Oceanogr., 1:180–198.
  • Zaitsev, Y. P. and Mamaev, V., 1997. Biological Diversity in the Black Sea: A Study of Change and Decline. United Nations Publications, New York, 208 pp.

Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem

Year 2013, , - , 01.08.2013
https://doi.org/10.4194/1303-2712-v13_4_03

Abstract

Karadeniz besin ağında gözlemlenen değişimlerin ötrofikasyon, balıkçılık ve iklim değişikliklerinden kaynaklı üstten alta (top down) ve altan üste (bottom up) kontrol mekanizmalarına verdiği tepkiyi anlayabilmek üzere bir Karadeniz besin ağı modeli kullanılmıştır. Gerçekleştirilen simülasyonlarda bu baskıları kontrol eden üç parametre seçilmiştir; (i) kemoklin tabakadan ışıklı tabakaya (öfotik bölge) olan azot girdisi (ötrofikasyon kaynaklı), (ii) planktivor balıklar tarafından mesozooplankton üzerinde uygulanan predasyon baskısı (balıkçılık etkisi), (iii) Q parametresinin Mnemiopsis büyümesini sıcaklığa göre kontrolü (iklim etkisi). Besin tuzu artışının ekosistem üzerindeki etkisinin analizine yönelik yapılan simulasyon sonuçlarına göre bu koşullar altında trofik enerji akışı Noctiluca ve Aurelia yönünde olmuştur. Yine bu dönemde artan planktivor balık kaynaklı predasyon baskısı mesozooplankton biyokütlesinin azalmasına yol açmış ve bu da Noctiluca üzerindeki trofik baskıyı azaltarak Noctiluca populasyonunun artmasında rol oynamıştır. Burada mevcut modelde mesozooplanktonun Noctiluca üzerinde azda olsa (%15) beslenebildiği unutulmamalıdır. Bunu takiben Noctiluca besin ağı ve trofik seviyeler arası enerji akışı içerisinde etkili bir konuma gelmiştir. Planktivor balıkların aşırı avlanması sonucunda 1980’lerin sonunda on yıllık soğuk dönemden sonra değişen iklim koşullarıyla beraber (artan sıcaklık) Mnemiopsis biyokütlesi önemli ölçüde artmıştır. Dolayısıyla sonuçlar, aşırı balıkçılığın Mnemiopsis biyokütlesinde görülen aşırı artışı artan deniz suyu sıcaklığının etkisi olmaksızın tetikleyemeyeceğine işaret etmektedir.

References

  • BSC 2008. State of the Environment of the Black Sea (2001-2006/7), Oguz T 391 (ed) The Commission on the Protection of the Black Sea Against Pollution publication, 392 448 pp.
  • Daskalov G.M., Grishin A.N., Rodianov S., Mihneva V. 200 Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc Natl Acad Sci USA 104:10518–10523
  • Dorofeyev, V. L., Oguz, T., Sukhikh, L. I., Knysh, V. V., Kubryakov, A. I., and Korotaev, G. K. 20 Modeling long-term changes of the Black Sea ecosystem characteristics, Ocean Sci. Discuss., 9, 2039-2080, doi:10.5194/osd-9-2039-2012, 2012.
  • Edwards, A.M. 2001. Adding detritus to a nutrientphytoplankton-zooplankton model: a dynamicalsystems approach. Journal of Plankton Research, 23(4): 389-413. doi: 10.1093/plankt/23.4.389
  • Elbrachter M., Qi Z. (1998) Aspects of Noctiluca (Dinophyceae) population dynamics. In: M. Anderson, D. Cembella & M. Hallegraeff (Eds). Physiological ecology of harmful algal blooms: 3153
  • Fulton, E.A., Smith, A.D.M. and Johnson, C.R. 2003. Mortality and predation in ecosystem models: is it important how these are expressed? Ecological Model-ling, 169: 157–178. doi: 10.1016/S03043800(03)00268-0
  • Gentleman, W., Leising, A., Frost, B., Strom, S. and Murray, J. 200 Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Research II, 50: 2847–2875. doi: 1016/j.dsr2.2003.07.001
  • Gibson, G.A., Musgrave, D.L. and Hinckley, S., 2005. Nonlinear dynamics of a pelagic ecosystem model with multiple predator and prey types. Journal of Plankton Research, 27(5): 427–447. doi: 10.1093/plankt/fbi016 Gregoire M., Lacroix G. 2003. Exchange processes and nitrogen cycling on the shelf and continental slope of the Black Sea basin. Global Biogeochememical Cycles, 17:1072.
  • Grégoire M., Friedrich J. 2004. Nitrogen budget of the north-western black sea shelf as inferred from modeling studies and in-situ benthic measurements. Mar. Ecol. Prog. Ser., 270:15–39.
  • Gregoire M., Soetaert K., Nezlin N., Kostianoy A. 2004. Modeling the nitrogen cycling and plankton productivity in the Black Sea using a threedimensional interdisciplinary model. J. Geophys. Res., 109, C05007, doi:10.1029/2001JC001014.
  • Gregoire M., Raick C., Soetaert K. 2008. Numerical modeling of the deep black sea ecosystem functioning during the late 1980s (eutrophication phase). Progress in Oceanography, 76:286–333.
  • Kemp, W.M., Brooks, M.T. and Hood, R.R., 2001. Nutrient enrichment, habitat variability and trophic transfer efficiency in simple models of pelagic ecosystems. Marine Ecology Progress Series, 223: 73–87. doi: 3354/meps223073
  • Korotaev, G.K., Oguz, T., Dorofeyev, V.L., Demyshev, S.G., Kubryakov, A.I. and Ratner, Y.B. 2001. Development of Black Sea nowcasting and forecasting system. Ocean Sci., 7, 629-649.
  • Lancelot C., Staneva J., Van Eeckhout D., Beckers J.M., Stanev E. 2002. Modeling the impact of the human forcing on the ecological functioning of the northwestern Black Sea, Estuarine. Coastal and Shelf Science, 54:473-500.
  • Lima, I.D., Olson, D.B. and Doney, S.C. 2002. Intrinsic dynamics and stability properties of size-structured pelagic ecosystem models. Journal of Plankton Research, 24: 533–556. doi: 10.1093/plankt/24.6.533
  • Mee L.D., Friedrich J., Gomoiu M.T. 2005. Restoring the Black Sea in times of uncertainty. Oceanography (Wash DC) 18:32 – 43
  • Miyaguci, H.; Fujiki, T.; Kikuci, T. Et al. Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res., v. 28, n. 3, p. 313-324, 200 Morozov, A.Y., Nezlin, N.P. and Petrovskii, S.V. 2005. Invasion of a top predator into an epipelagic ecosystem can bring a paradoxical top-down trophic control. Biological Invasions 7: 845–861. doi: 1007/s10530-005-5213-y
  • Oguz T., Ducklow J., Malanotte-Rizzoli P. 2000. Modeling distinct vertical biogeochemical structure of the Black Sea: dynamical coupling of the oxic, suboxic, and anoxic layers. Global Biogeochemical Cycles, 14 (4):1331–1352.
  • Oguz, T., Salihoglu, B. 2000. Simulation of eddy-driven phy- toplankton production in the Black Sea. Geophys. Res. Lett. 27 (14), 2125–2128.
  • Oguz T, Ducklow J, Purcell J, Malanotte-Rizzoli P. 2001a. Modeling the response of top-down control exerted by gelatinous carnivores on the black sea pelagic food web. J. Geophys. Res., 106(C3):4543–4564.
  • Oguz T., Malanotte-Rizzoli P., Ducklow H.W. 2001b. Simulations of phytoplankton seasonal cycle with multi-level and multi-layer physical-ecosystem models: The Black Sea example. Ecological Modelling, 144:295-314.
  • Oguz T., Merico A. 2006. Factors controlling the summer Emiliania huxleyi bloom in the Black Sea: a modeling study. J. Marine Systems, 59:173-188.
  • Oguz T., Salihoglu, B., Fach, B. 2008a. A coupled plankton–anchovy population dynamics model assessing nonlinear controls of anchovy and gelatinous biomass in the Black Sea. Mar. Ecol. Prog. Ser. 369: 229–256
  • Oguz T., Fach B., Salihoglu B. 2008b. Invasion dynamics of the alien ctenophore Mnemiopsis leidyi and its impact on anchovy collapse in the Black Sea. J Plankton Res 30(12): 13851397
  • Oguz T., Velikova V. 2010. Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Mar. Ecol. Prog. Ser., 405:231–242.
  • Oguz T., Akoglu E., Salihoglu B. 2012a. Current state of overfishing and its regional differences in the Black Sea. Ocean and Coastal Management, 58:47-56.
  • Nesterova D.A., Moncheva S., Mikaelyan A., Vershinin A. and others 2008. The state of phytoplankton. In: Oguz T (ed) State of the environment of the Black Sea (2001–2006/7). The Commission on the Protection of the Black Sea Against Pollution publication, Istanbul, p 173–200
  • Niiler, P.P., Kraus, E.B., 1977. One dimensional models of the upper ocean. In: Kraus, E.B. (Ed.), Modelling and Predic- tion of the Upper Layers of the Ocean. Pergamon Press, New York, pp. 143–172.
  • Salihoglu, B. (1998) Three-layer model of plankton productivity in the Black Sea basin. M.Sc. Thesis. Institute of Marine Sciences, Middle East Technical University, Turkey, 92 pp.
  • Zaitsev Y.P. 1992. Recent changes in the trophic structure of the Black Sea. Fish Oceanogr., 1:180–198.
  • Zaitsev, Y. P. and Mamaev, V., 1997. Biological Diversity in the Black Sea: A Study of Change and Decline. United Nations Publications, New York, 208 pp.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Baris Salihoglu This is me

Nusret Sevinc This is me

Publication Date August 1, 2013
Published in Issue Year 2013

Cite

APA Salihoglu, B., & Sevinc, N. (2013). Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem. Turkish Journal of Fisheries and Aquatic Sciences, 13(4). https://doi.org/10.4194/1303-2712-v13_4_03
AMA Salihoglu B, Sevinc N. Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem. Turkish Journal of Fisheries and Aquatic Sciences. August 2013;13(4). doi:10.4194/1303-2712-v13_4_03
Chicago Salihoglu, Baris, and Nusret Sevinc. “Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem”. Turkish Journal of Fisheries and Aquatic Sciences 13, no. 4 (August 2013). https://doi.org/10.4194/1303-2712-v13_4_03.
EndNote Salihoglu B, Sevinc N (August 1, 2013) Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem. Turkish Journal of Fisheries and Aquatic Sciences 13 4
IEEE B. Salihoglu and N. Sevinc, “Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem”, Turkish Journal of Fisheries and Aquatic Sciences, vol. 13, no. 4, 2013, doi: 10.4194/1303-2712-v13_4_03.
ISNAD Salihoglu, Baris - Sevinc, Nusret. “Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem”. Turkish Journal of Fisheries and Aquatic Sciences 13/4 (August 2013). https://doi.org/10.4194/1303-2712-v13_4_03.
JAMA Salihoglu B, Sevinc N. Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem. Turkish Journal of Fisheries and Aquatic Sciences. 2013;13. doi:10.4194/1303-2712-v13_4_03.
MLA Salihoglu, Baris and Nusret Sevinc. “Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem”. Turkish Journal of Fisheries and Aquatic Sciences, vol. 13, no. 4, 2013, doi:10.4194/1303-2712-v13_4_03.
Vancouver Salihoglu B, Sevinc N. Quantification of the Synergistic Effects of Eutrophication, Apex Predator Pressure, and Internal Processes on the Black Sea Ecosystem. Turkish Journal of Fisheries and Aquatic Sciences. 2013;13(4).