BibTex RIS Cite

Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus mykiss)

Year 2013, , - , 01.06.2013
https://doi.org/10.4194/1303-2712-v13_3_09

Abstract

This study was conducted to determine the effects of various lengths of starvation periods on following compensatory growth (CG) in rainbow trout under summer conditions (18.1°C and day length of 12.5-14.5 hours). Five treatments with triplicate tanks were as follows: control (C) fed to satiation over 84 days; one (S1), two (S2), three (S3), and four (S4) weeks of starvation; and then refeeding for the remaining eight weeks of the experiment. Starvation periods induced hyperphagia during refeeding but only S1 and S2 were able to catch up with C. Repeated measures of analysis of variance suggested a convergence in body mass but not in body length (structure). Organo-somatic indices of the starvation groups were significantly reduced at the end of starvation periods and restored to levels of the control fish within the first two weeks of the refeeding period. Broadly speaking, starvation longer than one week significantly reduced apparent digestibility of dry matter, lipid, and energy compared with the control group but did not affect protein and ash, and a complete recovery in the digestibility coefficients occurred within two weeks of satiation feeding. There was a linear increase in body moisture and a decrease in lipid and lipid/lean body mass ratio with the severity of starvation periods, but these divergences largely disappeared at the end of refeeding. During the starvation period, the protein synthesis rate (estimated using RNA/DNA ratio in the muscle and liver) reduced but in subsequent refeeding period, it increased in starved fish. The findings of the present experiment suggest that an application of single starvation episodes to elicit CG as a management tool in summer conditions should not be longer than two weeks.

References

  • Ali, M., Cui, Y., Zhu, X. and Wootton, R.J. 2001. Dynamics of appetite in three fish species (Gasterosteus aculeatus, Phoxinus phoxinus and Carassius auratus gibelio) after feed deprivation. Aquac. Res., 32: 443-450. doi: 10.1046/j.1365-2109.2001.00594.x
  • Ali, M., Nicieza, A. and Wootton, R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish Fish., 4: 147-190. doi: 10.1046/j.1467-2979.2003.00120.x
  • Alpaslan, A. and Pulatsü, S. 2008. The effect of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) cage culture on sediment quality in Kesikköprü Reservoir, Turkey. Turk. J. Fish. Aquat. Sci., 8: 65-70.
  • Álvarez, D. and Nicieza, A.G. 2005. Compensatory response ‘defends’ energy levels but not growth trajectories in brown trout, Salmo trutta L. Proc. R. Soc. B-Biol., 272: 601-607. doi: 10.1098/rspb.2004.2991
  • AOAC. 1990. Official Methods of Analysis, 15 ed. Association of Official Analytical Chemists. Arlington, VA.
  • Atasoy, A.D.S. and Şeneş, Ş. 2004. Atatürk Baraj Gölünde alabalık üretiminin oluşturduğu kirlilik yükünün araştırılması. Ekoloji, 14: 9-17.
  • Başçınar, N., Gümrükçü, F. and Okumuş, İ. 2008. A study of on (Oncorhynchus FisheriesSciences.com, 2: 224-232. rainbow trout J. mykiss Walbaum).
  • Bavčević, L., Klanjšček, T., Karamarko, V., Aničić, I. and Legović, T. 2010. Compensatory growth in gilthead sea bream (Sparus aurata) compensates weight, but not length. Aquaculture, 301: 57-63. doi: 10.1016/j.aquaculture.2010.01.009
  • Bélanger, F., Blier, P.U. and Dutil, J.D. 2002. Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). Fish Physiol. Biochem., 26: 121-128. doi: 10.1023/a:1025461108348
  • Bhat, S.A., Chalkoo, S.R. and Shammi, Q.S. 2011. Nutrient utilization and food conversion of rainbow trout, Onchorhynchus mykiss, subjected to mixed feeding schedules. Turk. J. Fish. Aquat. Sci., 11: 273-281. doi: 10.4194/trjfas.2011.0212
  • Black, D. and Love, R.M. 1986. The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. J. Comp. Physiol. B., 156: 469-479. doi: 10.1007/bf00691032
  • Blake, R.W., Inglis, S.D. and Chan, K.H.S. 2006. Growth, carcass composition and plasma growth hormone levels in cyclically fed rainbow trout. J. Fish Biol., 69: 807- 817. doi: 10.1111/j.1095-8649.2006.01150.x
  • Boujard, T., Burel, C., Médale, F., Haylor, G. and Moisan, A. 2000. Effect of past nutritional history and fasting on feed intake and growth in rainbow trout Oncorhynchus mykiss. doi:10.1016/S0990-7440(00)00149-2 Resour., 13: 129-137.
  • Brett, J.R., Shelbourn, J.E. and Shoop, C.T. 1969. Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J. Fish. Res. Board Can., 26: 2363-2394. doi: 10.1139/f69-230
  • Bull, C.D. and Metcalfe, N.B. 1997. Regulation of hyperphagia in response to varying energy deficits in overwintering juvenile Atlantic salmon. J. Fish Biol., 50: 498-510. doi: 10.1111/j.1095-8649.1997.tb01945.x
  • Caldarone, E.M., Wagner, M., Onge-Burns, J. and Buckley, L.J. 2001. Protocol and guide for estimating nucleic acids in larval fish using a fluorescence microplate reader. Northeast Fish. Sci. Cent. Ref. Doc. 01–11:11– 22.
  • Cho, S.H. 2005. Compensatory growth of juvenile flounder Paralichthys olivaceus L. and changes in biochemical composition and body condition indices during starvation and after refeeding in winter season. J. World Aquacult. Soc., 36: 508-514. doi: 10.1111/j.1749- 7345.2005.tb00398.x
  • Cho, S.H., Lee, S.-M., Park, B.H., Ji, S.-C., Lee, J., Bae, J. and Oh, S.-Y. 2006. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus l., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. J. World Aquacult. Soc., 37:
  • Cook, J.T., Sutterlin, A.M. and McNiven, M.A. 2000. Effect of food deprivation on oxygen consumption and body composition of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture, 188: 47-63. doi: 10.1016/s0044-8486(00)00333-1
  • Dobson, S.H. and Holmes, R.M. 1984. Compensatory growth in the rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 25: 649-656. doi: 10.1111/j.1095-8649.1984.tb04911.x
  • Engqvist, L. 2005. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav., 70: 967- 971.
  • Eroldoğan, O.T., Metin, K. and Barιş, S. 2006. Effects of starvation and re-alimentation periods on growth performance and hyperphagic response of Sparus aurata. Aquac. Res., 37: 535-537. doi: 10.1111/j.1365- 2109.2006.01445.x
  • Farbridge, K.J., Flett, P.A. and Leatherland, J.F. 1992. Temporal effects of restricted diet and compensatory increased dietary intake on thyroid function, plasma growth hormone levels and tissue lipid reserves of rainbow trout Oncorhynchus mykiss. Aquaculture, 104: 157-174. doi: 10.1016/0044-8486(92)90146-c
  • Furukawa, A. and Tsukahara, H. 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bull. Jpn. Soc. Sci. Fish., 32: 502-506.
  • Gaylord, I.G. and Gatlin, D.M. 2000. Assessment of compensatory growth in channel catfish Ictalurus punctatus R. and associated changes in body condition indices. J. World Aquacult. Soc., 31: 326-336. doi: 10.1111/j.1749-7345.2000.tb00884.x
  • German, D.P., Neuberger, D.T., Callahan, M.N., Lizardo, N.R. and Evans, D.H. 2010. Feast to famine: the effects of food quality and quantity on the gut structure and function Loricariidae). Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 155: 13-13. doi: 10.1016/j.cbpa.2009.10.018
  • Guzel, Ş. and Arvas, A. 2011. Effects of different feeding strategies on the growth of young rainbow trout (Oncorhynchus mykiss). Afr. J. Biotechnol., 10: 5048- 5052. doi: 10.5897/AJB11.271
  • Hayward, R.S., Noltie, D.B. and Wang, N. 1997. Use of compensatory growth to double hybrid sunfish growth rates. Trans. Am. Fish. Soc., 126: 316-322. doi: 10.1577/1548- 8659(1997)126<0316:NUOCGT>2.3.CO;2
  • Jobling, M. and Johansen, S.J.S. 1999. The lipostat, hyperphagia and catch-up growth. Aquac. Res., 30: 473- 478. doi: 10.1046/j.1365-2109.1999.00358.x
  • Johansen, S.J.S., Ekli, M. and Jobling, M. 2002. Is there lipostatic regulation of feed intake in Atlantic salmon Salmo salar L.? Aquac. Res., 33: 515-524. doi: 10.1046/j.1365-2109.2002.00736.x
  • Johansen, S.J.S., Ekli, M., Stangnes, B. and Jobling, M. 2001. Weight gain and lipid deposition in Atlantic salmon, Salmo salar, during compensatory growth: evidence for lipostatic regulation? Aquac. Res., 32: 963- 974. doi: 10.1046/j.1365-2109.2001.00632.x
  • Kindschi, G.A. 1988. Effect of intermittent feeding on growth of rainbow trout, Salmo gairdneri Richardson. Aquac. Res., 19: 213-215. doi: 10.1111/j.1365- 2109.1988.tb00424.x
  • Mäkinen, T. 1994. Effect of temperature and feed ration on energy utilization in large rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res., 25: 213-232. doi: 10.1111/j.1365-2109.1994.tb00575.x
  • McMillan, D.N. and Houlihan, D.F. 1989. Short-term responses of protein synthesis to re-feeding in rainbow trout. Aquaculture, 79: 37-46. doi: 10.1016/0044- 8486(89)90443-2
  • Mefut, A., Emre, Y., Diler, Ö., Altun, S. and İnce, İ. 2007. The investigation of structural properties of rainbow trout farms in Mediterranean region (2000-2003). Turk Journal of Aquatic Life, 5: 9-18.
  • Méndez, G. and Wieser, W. 1993. Metabolic responses to food deprivation and refeeding in juveniles of Rutilus rutilus (Teleostei: Cyprinidae). Environ. Biol. Fishes, 36: 73-81. doi: 10.1007/bf00005981
  • Miglavs, I. and Jobling, M. 1989. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinus alpinus, with particular respect to compensatory growth. J. Fish Biol., 34: 947-957. doi: 10.1111/j.1095-8649.1989.tb03377.x
  • Mohanta, K.N., Mohanty, S.N., Jena, J. and Sahu, N.P. 2009. A dietary energy level of 14.6 MJ kg−1 and protein-to-energy ratio of 20.2 g MJ−1 results in best growth performance and nutrient accretion in silver barb Puntius gonionotus fingerlings. Aquac. Nutr., 15: 627- 637. doi: 10.1111/j.1365-2095.2008.00632.x
  • Mommsen, T.P. 2001. Paradigms of growth in fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 129: 207- 219. doi: 10.1016/s1096-4959(01)00312-8
  • Morgan, I.J. and Metcalfe, N.B. 2001. Deferred costs of compensatory growth after autumnal food shortage in juvenile salmon. Proc. R. Soc. Lond. B. Biol. Sci., 268: 295-301. doi: 10.1098/rspb.2000.1365
  • Mortensen, A. and Damsgård, B. 1993. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon (Salmo salar L.) and Arctic charr (Salvelinus alpinus L.). Aquaculture, 114: 261-272. doi: 10.1016/0044- 8486(93)90301-e
  • Mylonas, C.C., Anezaki, L., Divanach, P., Zanuy, S., Piferrer, F., Ron, B., Peduel, A., Ben Atia, I., Gorshkov, S. and Tandler, A. 2005. Influence of rearing temperature during the larval and nursery periods on growth and sex differentiation in two Mediterranean strains of Dicentrarchus labrax. J. Fish Biol., 67: 652- 668. doi: 10.1111/j.0022-1112.2005.00766.x
  • Nicieza, A. and Álvarez, D. 2009. Statistical analysis of structural compensatory growth: how can we reduce the rate of false detection? Oecologia, 159: 27-39. doi: 10.1007/s00442-008-1194-8
  • Nikki, J., Pirhonen, J., Jobling, M. and Karjalainen, J. 2004. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture, 10.1016/j.aquaculture.2003.10.017 285-296. doi:
  • Nykänen, M. 2006. Effects of temperature and feeding regime on compensatory growth of rainbow trout, Oncorhynchus University of Jyväskylä, 32 pp.
  • In. Jyväskylä, Finland:
  • O'Connor, K.I., Taylor, A.C. and Metcalfe, N.B. 2000. The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J. Fish Biol., 8649.2000.tb00774.x doi: 10.1111/j.1095
  • Okumus, I. and Bascinar, N. 2001. The effect of different numbers of feeding days on feed consumption and growth of rainbow trout [Oncorhynchus mykiss (Walbaum)]. Aquac. Res.,32:
  • Peres, H., Santos, S. and Oliva-Teles, A. 2011. Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent refeeding. Aquaculture, 318: 384-388. doi: 10.1016/j.aquaculture.2011.06.010
  • Person-Le Ruyet, J., Buchet, V., Vincent, B., Le Delliou, H. and Quéméner, L. 2006. Effects of temperature on the growth of pollack (Pollachius pollachius) juveniles. Aquaculture, 10.1016/j.aquaculture.2005.06.029 340-345. doi:
  • Qian, X., Cui, Y., Xiong, B. and Yang, Y. 2000. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation. J. Fish Biol., 56: 228-232. doi: 10.1111/j.1095-8649.2000.tb02101.x
  • Quinton, J.C. and Blake, R.W. 1990. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. J. Fish Biol., 37: 33-41. doi: 10.1111/j.1095-8649.1990.tb05924.x
  • Rios, F.A., Moraes, G., Oba, E., Fernandes, M., Donatti, L., Kalinin, A. and Rantin, F. 2006. Mobilization and recovery of energy stores in traíra, Hoplias malabaricus Bloch (Teleostei, Erythrinidae) during long-term starvation and after re-feeding. J. Comp. Physiol. B, 176: 721-728. doi: 10.1007/s00360-006-0098-3
  • Rios, F.S., Kalinin, A.L., Fernandes, M.N. and Rantin, F.T. 2004. Changes in gut gross morphology of traíra, Hoplias malabaricus (Teleostei, Erythrinidae) during long-term starvation and after refeeding. Braz. J. Biol., 64: 683-689. doi: 10.1590/S1519-69842004000400017
  • Rodríguez, A., Castelló-Orvay, F. and Gisbert, E. 2009. Somatic growth, survival, feed utilization and starvation in European elver Anguilla anguilla (Linnaeus) under two different photoperiods. Aquac. Res., 40: 551-557. doi: 10.1111/j.1365-2109.2008.02129.x
  • Rueda, F.M., Martinez, F.J., Zamora, S., Kentouri, M. and Divanach, P. 1998. Effect of fasting and refeeding on growth and body composition of red porgy, Pagrus pagrus L. Aquac. Res., 29: 447-452. doi: 10.1046/j.1365-2109.1998.00228.x
  • Sogard, S.M. and Spencer, M.L. 2004. Energy allocation in juvenile sablefish: effects of temperature, ration and body size. J. Fish Biol., 64: 726-738. doi: 10.1111/j.1095-8649.2004.00342.x
  • Sonoyama, K., Fujiwara, R., Takemura, N., Ogasawara, T., Watanabe, J., Ito, H. and Morita, T. 2009. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl. Environ. Microbiol., 75: 6451-6456. doi: 10.1128/aem.00692-09
  • Tian, X. and Qin, J.G. 2003. A single phase of food deprivation barramundi Lates calcarifer. Aquaculture, 224: 169- 179. doi: 10.1016/s0044-8486(03)00224-2 growth in
  • Tian, X. and Qin, J.G. 2004. Effects of previous ration restriction on compensatory growth in barramundi Lates calcarifer. Aquaculture, 235: 273-283. doi: 10.1016/j.aquaculture.2003.09.055
  • Wang, T., Hung, C. and Randall, D.J. 2006. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol., 68: 223–251. doi: 10.1146/annurev.physiol.68.040104.105739
  • Wang, Y., Cui, Y., Yang, Y. and Cai, F. 2000. Compensatory growth in hybrid tilapia, Oreochromis mossambicus×O. Aquaculture, 189: 101-108. doi: 10.1016/s0044- 8486(00)00353-7 reared in seawater.
  • Wang, Y., Cui, Y., Yang, Y. and Cai, F. 2005. Partial compensatory growth in hybrid tilapia Oreochromis mossambicus×O. niloticus following food deprivation. J. Appl. Ichthyol., 21: 389-393. doi: 10.1111/j.1439- 0426.2005.00648.x
  • Xiao, J-X, Zhou, F, Yin, N, Zhou, J, Gao, S, Li, H, Shao, Q- JXu, J. 2012. Compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii with cyclical feed deprivation and refeeding. Aquac Res: n/a-n/a. doi: 10.1111/j.1365-2109.2012.03108.

Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus mykiss)

Year 2013, , - , 01.06.2013
https://doi.org/10.4194/1303-2712-v13_3_09

Abstract

Bu araştırma, farklı uzunlukta açlık sürelerinin yaz koşullarında (18.1°C su sıcaklığı ve 12.5-14.5 saat gün uzunluğu) gökkuşağı alabalığında telafi büyümesi (TB) üzerine etkilerinin belirlenmesi amacıyla yürütülmüştür. Üç tekerrürlü 5 grup, kontrol (K, 84 gün boyunca doyana kadar yemleme), bir (A1), iki (A2), üç (A3) ve dört (A4) hafta açlık ve ardından sekiz hafta doyana kadar yemlenen gruplardan oluşmuştur. Açlık süreleri yeniden besleme aşmasında yüksek iştaha neden olmuş, ancak sadece A1 ve A2 grupları K’ı yakalayabilmişlerdir. Tekrarlı ANOVA yapısal değil, vücut kitlesi bakımından gruplar arasında bir birleşmeyi işaret etmiştir. Aç bırakılan grupların organ-vücut indeksleri kontrole göre önemli derecede düşmüş, fakat yeniden beslemeye başlandıktan iki hafta sonra kontrol grubu seviyesine kavuşmuştur. Genel olarak bir haftadan uzun açlık süreleri kuru madde, lipit ve enerji sindirilebilirliğini kontrole göre önemli derecede düşürmüş, protein ve kül sindirimini etkilememiş; düşen sindirim değerleri yemleye başladıktan sonra iki hafta içinde kontrol düzeyine erişmiştir. Açlık şiddeti ile vücut nem düzeyinde doğrusal bir artış, lipit ve lipit/yağsız vücut kitlesi oranında ise doğrusal bir düşme olmuş, fakat bu farklılıklar deneme sonunda büyük çapta kaybolmuştur. Açlık protein sentez oranını (kas ve karaciğer RNA/DNA oranı) düşürmüş, yemleme aşamasında ise önceden açlığa maruz kalanlarda (özellikle uzun sürelilerde) arttırmıştır. Bu araştırmanın bulguları, yaz koşullarında açlık ve ardından TB bir yetiştiricilik yönetim aracı kullanılacak ise, açlığın iki haftayı geçmemesi gerektiğini göstermektedir.

References

  • Ali, M., Cui, Y., Zhu, X. and Wootton, R.J. 2001. Dynamics of appetite in three fish species (Gasterosteus aculeatus, Phoxinus phoxinus and Carassius auratus gibelio) after feed deprivation. Aquac. Res., 32: 443-450. doi: 10.1046/j.1365-2109.2001.00594.x
  • Ali, M., Nicieza, A. and Wootton, R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish Fish., 4: 147-190. doi: 10.1046/j.1467-2979.2003.00120.x
  • Alpaslan, A. and Pulatsü, S. 2008. The effect of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) cage culture on sediment quality in Kesikköprü Reservoir, Turkey. Turk. J. Fish. Aquat. Sci., 8: 65-70.
  • Álvarez, D. and Nicieza, A.G. 2005. Compensatory response ‘defends’ energy levels but not growth trajectories in brown trout, Salmo trutta L. Proc. R. Soc. B-Biol., 272: 601-607. doi: 10.1098/rspb.2004.2991
  • AOAC. 1990. Official Methods of Analysis, 15 ed. Association of Official Analytical Chemists. Arlington, VA.
  • Atasoy, A.D.S. and Şeneş, Ş. 2004. Atatürk Baraj Gölünde alabalık üretiminin oluşturduğu kirlilik yükünün araştırılması. Ekoloji, 14: 9-17.
  • Başçınar, N., Gümrükçü, F. and Okumuş, İ. 2008. A study of on (Oncorhynchus FisheriesSciences.com, 2: 224-232. rainbow trout J. mykiss Walbaum).
  • Bavčević, L., Klanjšček, T., Karamarko, V., Aničić, I. and Legović, T. 2010. Compensatory growth in gilthead sea bream (Sparus aurata) compensates weight, but not length. Aquaculture, 301: 57-63. doi: 10.1016/j.aquaculture.2010.01.009
  • Bélanger, F., Blier, P.U. and Dutil, J.D. 2002. Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). Fish Physiol. Biochem., 26: 121-128. doi: 10.1023/a:1025461108348
  • Bhat, S.A., Chalkoo, S.R. and Shammi, Q.S. 2011. Nutrient utilization and food conversion of rainbow trout, Onchorhynchus mykiss, subjected to mixed feeding schedules. Turk. J. Fish. Aquat. Sci., 11: 273-281. doi: 10.4194/trjfas.2011.0212
  • Black, D. and Love, R.M. 1986. The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. J. Comp. Physiol. B., 156: 469-479. doi: 10.1007/bf00691032
  • Blake, R.W., Inglis, S.D. and Chan, K.H.S. 2006. Growth, carcass composition and plasma growth hormone levels in cyclically fed rainbow trout. J. Fish Biol., 69: 807- 817. doi: 10.1111/j.1095-8649.2006.01150.x
  • Boujard, T., Burel, C., Médale, F., Haylor, G. and Moisan, A. 2000. Effect of past nutritional history and fasting on feed intake and growth in rainbow trout Oncorhynchus mykiss. doi:10.1016/S0990-7440(00)00149-2 Resour., 13: 129-137.
  • Brett, J.R., Shelbourn, J.E. and Shoop, C.T. 1969. Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J. Fish. Res. Board Can., 26: 2363-2394. doi: 10.1139/f69-230
  • Bull, C.D. and Metcalfe, N.B. 1997. Regulation of hyperphagia in response to varying energy deficits in overwintering juvenile Atlantic salmon. J. Fish Biol., 50: 498-510. doi: 10.1111/j.1095-8649.1997.tb01945.x
  • Caldarone, E.M., Wagner, M., Onge-Burns, J. and Buckley, L.J. 2001. Protocol and guide for estimating nucleic acids in larval fish using a fluorescence microplate reader. Northeast Fish. Sci. Cent. Ref. Doc. 01–11:11– 22.
  • Cho, S.H. 2005. Compensatory growth of juvenile flounder Paralichthys olivaceus L. and changes in biochemical composition and body condition indices during starvation and after refeeding in winter season. J. World Aquacult. Soc., 36: 508-514. doi: 10.1111/j.1749- 7345.2005.tb00398.x
  • Cho, S.H., Lee, S.-M., Park, B.H., Ji, S.-C., Lee, J., Bae, J. and Oh, S.-Y. 2006. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus l., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. J. World Aquacult. Soc., 37:
  • Cook, J.T., Sutterlin, A.M. and McNiven, M.A. 2000. Effect of food deprivation on oxygen consumption and body composition of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture, 188: 47-63. doi: 10.1016/s0044-8486(00)00333-1
  • Dobson, S.H. and Holmes, R.M. 1984. Compensatory growth in the rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 25: 649-656. doi: 10.1111/j.1095-8649.1984.tb04911.x
  • Engqvist, L. 2005. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav., 70: 967- 971.
  • Eroldoğan, O.T., Metin, K. and Barιş, S. 2006. Effects of starvation and re-alimentation periods on growth performance and hyperphagic response of Sparus aurata. Aquac. Res., 37: 535-537. doi: 10.1111/j.1365- 2109.2006.01445.x
  • Farbridge, K.J., Flett, P.A. and Leatherland, J.F. 1992. Temporal effects of restricted diet and compensatory increased dietary intake on thyroid function, plasma growth hormone levels and tissue lipid reserves of rainbow trout Oncorhynchus mykiss. Aquaculture, 104: 157-174. doi: 10.1016/0044-8486(92)90146-c
  • Furukawa, A. and Tsukahara, H. 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bull. Jpn. Soc. Sci. Fish., 32: 502-506.
  • Gaylord, I.G. and Gatlin, D.M. 2000. Assessment of compensatory growth in channel catfish Ictalurus punctatus R. and associated changes in body condition indices. J. World Aquacult. Soc., 31: 326-336. doi: 10.1111/j.1749-7345.2000.tb00884.x
  • German, D.P., Neuberger, D.T., Callahan, M.N., Lizardo, N.R. and Evans, D.H. 2010. Feast to famine: the effects of food quality and quantity on the gut structure and function Loricariidae). Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 155: 13-13. doi: 10.1016/j.cbpa.2009.10.018
  • Guzel, Ş. and Arvas, A. 2011. Effects of different feeding strategies on the growth of young rainbow trout (Oncorhynchus mykiss). Afr. J. Biotechnol., 10: 5048- 5052. doi: 10.5897/AJB11.271
  • Hayward, R.S., Noltie, D.B. and Wang, N. 1997. Use of compensatory growth to double hybrid sunfish growth rates. Trans. Am. Fish. Soc., 126: 316-322. doi: 10.1577/1548- 8659(1997)126<0316:NUOCGT>2.3.CO;2
  • Jobling, M. and Johansen, S.J.S. 1999. The lipostat, hyperphagia and catch-up growth. Aquac. Res., 30: 473- 478. doi: 10.1046/j.1365-2109.1999.00358.x
  • Johansen, S.J.S., Ekli, M. and Jobling, M. 2002. Is there lipostatic regulation of feed intake in Atlantic salmon Salmo salar L.? Aquac. Res., 33: 515-524. doi: 10.1046/j.1365-2109.2002.00736.x
  • Johansen, S.J.S., Ekli, M., Stangnes, B. and Jobling, M. 2001. Weight gain and lipid deposition in Atlantic salmon, Salmo salar, during compensatory growth: evidence for lipostatic regulation? Aquac. Res., 32: 963- 974. doi: 10.1046/j.1365-2109.2001.00632.x
  • Kindschi, G.A. 1988. Effect of intermittent feeding on growth of rainbow trout, Salmo gairdneri Richardson. Aquac. Res., 19: 213-215. doi: 10.1111/j.1365- 2109.1988.tb00424.x
  • Mäkinen, T. 1994. Effect of temperature and feed ration on energy utilization in large rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res., 25: 213-232. doi: 10.1111/j.1365-2109.1994.tb00575.x
  • McMillan, D.N. and Houlihan, D.F. 1989. Short-term responses of protein synthesis to re-feeding in rainbow trout. Aquaculture, 79: 37-46. doi: 10.1016/0044- 8486(89)90443-2
  • Mefut, A., Emre, Y., Diler, Ö., Altun, S. and İnce, İ. 2007. The investigation of structural properties of rainbow trout farms in Mediterranean region (2000-2003). Turk Journal of Aquatic Life, 5: 9-18.
  • Méndez, G. and Wieser, W. 1993. Metabolic responses to food deprivation and refeeding in juveniles of Rutilus rutilus (Teleostei: Cyprinidae). Environ. Biol. Fishes, 36: 73-81. doi: 10.1007/bf00005981
  • Miglavs, I. and Jobling, M. 1989. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinus alpinus, with particular respect to compensatory growth. J. Fish Biol., 34: 947-957. doi: 10.1111/j.1095-8649.1989.tb03377.x
  • Mohanta, K.N., Mohanty, S.N., Jena, J. and Sahu, N.P. 2009. A dietary energy level of 14.6 MJ kg−1 and protein-to-energy ratio of 20.2 g MJ−1 results in best growth performance and nutrient accretion in silver barb Puntius gonionotus fingerlings. Aquac. Nutr., 15: 627- 637. doi: 10.1111/j.1365-2095.2008.00632.x
  • Mommsen, T.P. 2001. Paradigms of growth in fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 129: 207- 219. doi: 10.1016/s1096-4959(01)00312-8
  • Morgan, I.J. and Metcalfe, N.B. 2001. Deferred costs of compensatory growth after autumnal food shortage in juvenile salmon. Proc. R. Soc. Lond. B. Biol. Sci., 268: 295-301. doi: 10.1098/rspb.2000.1365
  • Mortensen, A. and Damsgård, B. 1993. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon (Salmo salar L.) and Arctic charr (Salvelinus alpinus L.). Aquaculture, 114: 261-272. doi: 10.1016/0044- 8486(93)90301-e
  • Mylonas, C.C., Anezaki, L., Divanach, P., Zanuy, S., Piferrer, F., Ron, B., Peduel, A., Ben Atia, I., Gorshkov, S. and Tandler, A. 2005. Influence of rearing temperature during the larval and nursery periods on growth and sex differentiation in two Mediterranean strains of Dicentrarchus labrax. J. Fish Biol., 67: 652- 668. doi: 10.1111/j.0022-1112.2005.00766.x
  • Nicieza, A. and Álvarez, D. 2009. Statistical analysis of structural compensatory growth: how can we reduce the rate of false detection? Oecologia, 159: 27-39. doi: 10.1007/s00442-008-1194-8
  • Nikki, J., Pirhonen, J., Jobling, M. and Karjalainen, J. 2004. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture, 10.1016/j.aquaculture.2003.10.017 285-296. doi:
  • Nykänen, M. 2006. Effects of temperature and feeding regime on compensatory growth of rainbow trout, Oncorhynchus University of Jyväskylä, 32 pp.
  • In. Jyväskylä, Finland:
  • O'Connor, K.I., Taylor, A.C. and Metcalfe, N.B. 2000. The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J. Fish Biol., 8649.2000.tb00774.x doi: 10.1111/j.1095
  • Okumus, I. and Bascinar, N. 2001. The effect of different numbers of feeding days on feed consumption and growth of rainbow trout [Oncorhynchus mykiss (Walbaum)]. Aquac. Res.,32:
  • Peres, H., Santos, S. and Oliva-Teles, A. 2011. Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent refeeding. Aquaculture, 318: 384-388. doi: 10.1016/j.aquaculture.2011.06.010
  • Person-Le Ruyet, J., Buchet, V., Vincent, B., Le Delliou, H. and Quéméner, L. 2006. Effects of temperature on the growth of pollack (Pollachius pollachius) juveniles. Aquaculture, 10.1016/j.aquaculture.2005.06.029 340-345. doi:
  • Qian, X., Cui, Y., Xiong, B. and Yang, Y. 2000. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation. J. Fish Biol., 56: 228-232. doi: 10.1111/j.1095-8649.2000.tb02101.x
  • Quinton, J.C. and Blake, R.W. 1990. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. J. Fish Biol., 37: 33-41. doi: 10.1111/j.1095-8649.1990.tb05924.x
  • Rios, F.A., Moraes, G., Oba, E., Fernandes, M., Donatti, L., Kalinin, A. and Rantin, F. 2006. Mobilization and recovery of energy stores in traíra, Hoplias malabaricus Bloch (Teleostei, Erythrinidae) during long-term starvation and after re-feeding. J. Comp. Physiol. B, 176: 721-728. doi: 10.1007/s00360-006-0098-3
  • Rios, F.S., Kalinin, A.L., Fernandes, M.N. and Rantin, F.T. 2004. Changes in gut gross morphology of traíra, Hoplias malabaricus (Teleostei, Erythrinidae) during long-term starvation and after refeeding. Braz. J. Biol., 64: 683-689. doi: 10.1590/S1519-69842004000400017
  • Rodríguez, A., Castelló-Orvay, F. and Gisbert, E. 2009. Somatic growth, survival, feed utilization and starvation in European elver Anguilla anguilla (Linnaeus) under two different photoperiods. Aquac. Res., 40: 551-557. doi: 10.1111/j.1365-2109.2008.02129.x
  • Rueda, F.M., Martinez, F.J., Zamora, S., Kentouri, M. and Divanach, P. 1998. Effect of fasting and refeeding on growth and body composition of red porgy, Pagrus pagrus L. Aquac. Res., 29: 447-452. doi: 10.1046/j.1365-2109.1998.00228.x
  • Sogard, S.M. and Spencer, M.L. 2004. Energy allocation in juvenile sablefish: effects of temperature, ration and body size. J. Fish Biol., 64: 726-738. doi: 10.1111/j.1095-8649.2004.00342.x
  • Sonoyama, K., Fujiwara, R., Takemura, N., Ogasawara, T., Watanabe, J., Ito, H. and Morita, T. 2009. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl. Environ. Microbiol., 75: 6451-6456. doi: 10.1128/aem.00692-09
  • Tian, X. and Qin, J.G. 2003. A single phase of food deprivation barramundi Lates calcarifer. Aquaculture, 224: 169- 179. doi: 10.1016/s0044-8486(03)00224-2 growth in
  • Tian, X. and Qin, J.G. 2004. Effects of previous ration restriction on compensatory growth in barramundi Lates calcarifer. Aquaculture, 235: 273-283. doi: 10.1016/j.aquaculture.2003.09.055
  • Wang, T., Hung, C. and Randall, D.J. 2006. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol., 68: 223–251. doi: 10.1146/annurev.physiol.68.040104.105739
  • Wang, Y., Cui, Y., Yang, Y. and Cai, F. 2000. Compensatory growth in hybrid tilapia, Oreochromis mossambicus×O. Aquaculture, 189: 101-108. doi: 10.1016/s0044- 8486(00)00353-7 reared in seawater.
  • Wang, Y., Cui, Y., Yang, Y. and Cai, F. 2005. Partial compensatory growth in hybrid tilapia Oreochromis mossambicus×O. niloticus following food deprivation. J. Appl. Ichthyol., 21: 389-393. doi: 10.1111/j.1439- 0426.2005.00648.x
  • Xiao, J-X, Zhou, F, Yin, N, Zhou, J, Gao, S, Li, H, Shao, Q- JXu, J. 2012. Compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii with cyclical feed deprivation and refeeding. Aquac Res: n/a-n/a. doi: 10.1111/j.1365-2109.2012.03108.
There are 64 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hüseyin Sevgili This is me

* Belgin Hoşsu This is me

Yılmaz Emre This is me

Mahir Kanyılmaz This is me

Publication Date June 1, 2013
Published in Issue Year 2013

Cite

APA Sevgili, H., Hoşsu, *. B., Emre, Y., Kanyılmaz, M. (2013). Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences, 13(3). https://doi.org/10.4194/1303-2712-v13_3_09
AMA Sevgili H, Hoşsu *B, Emre Y, Kanyılmaz M. Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences. June 2013;13(3). doi:10.4194/1303-2712-v13_3_09
Chicago Sevgili, Hüseyin, * Belgin Hoşsu, Yılmaz Emre, and Mahir Kanyılmaz. “Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus Mykiss)”. Turkish Journal of Fisheries and Aquatic Sciences 13, no. 3 (June 2013). https://doi.org/10.4194/1303-2712-v13_3_09.
EndNote Sevgili H, Hoşsu *B, Emre Y, Kanyılmaz M (June 1, 2013) Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences 13 3
IEEE H. Sevgili, *. B. Hoşsu, Y. Emre, and M. Kanyılmaz, “Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus mykiss)”, Turkish Journal of Fisheries and Aquatic Sciences, vol. 13, no. 3, 2013, doi: 10.4194/1303-2712-v13_3_09.
ISNAD Sevgili, Hüseyin et al. “Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus Mykiss)”. Turkish Journal of Fisheries and Aquatic Sciences 13/3 (June 2013). https://doi.org/10.4194/1303-2712-v13_3_09.
JAMA Sevgili H, Hoşsu *B, Emre Y, Kanyılmaz M. Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences. 2013;13. doi:10.4194/1303-2712-v13_3_09.
MLA Sevgili, Hüseyin et al. “Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus Mykiss)”. Turkish Journal of Fisheries and Aquatic Sciences, vol. 13, no. 3, 2013, doi:10.4194/1303-2712-v13_3_09.
Vancouver Sevgili H, Hoşsu *B, Emre Y, Kanyılmaz M. Effect of Various Lengths of Single Phase Starvation on Compensatory Growth in Rainbow Trout under Summer Conditions (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences. 2013;13(3).