BibTex RIS Cite

Response of the Antioxidant System of Freshwater Fish (Oreochromis niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness

Year 2014, Volume: 14 Issue: 1, - , 07.07.2014
https://doi.org/10.4194/1303-2712-v14_1_06

Abstract

Suyun sertliği, metal toksisitesi ve balık fizyolojisini etkilemektedir. Bu nedenle, suda çözünmüş metallerin balık fizyolojisi üzerine olan etkisi farklı coğrafik bölgelerde farklılık gösterebilir. Bu çalışmada, iki farklı su ortamında Cd ve Cu’nun (1 mg/L) tatlısu balığı Oreochromis niloticus’un antioksidan sistemi üzerine olan toksik etkileri araştırılmıştır. Balıklar, sert su ( 320 mg CaCO/ L, iletkenlik 5.80 mS/cm) ve yumuşak suda ( 80 mg CaCO/ L, iletkenlik 1.77 mS/cm) 1, 7 ve 14 gün süre ile metal etkisine bırakıldıktan sonra antioksidan enzim (süperoksit dismutaz, SOD; katalaz, CAT; glutatyon peroksidaz, GPX; glutatyon redüktaz, GR ve glutatyon S-transferaz, GST) aktiviteleri ve toplam glutatyon (GSH) düzeyleri spektrofotometrik yöntemlerle ölçülmüştür. Yumuşak suda Cu etkisinde kalan balıklarda 8. günden sonra ölümler gözlenirken, diğer koşullarda balık ölümü görülmemiştir. Balık antioksidan sistemi farklı sulardaki metal etkilerine farklı tepkiler vermiştir. Benzer şekilde, kontrol balıkların antioksidan enzim aktiviteleri de suyun sertliğine bağlı olarak değişim göstermiştir. Metaller yumuşak suda, sert su ile karşılaştırıldığında, antioksidan sistem üzerine daha etkili olmuştur. En duyarlı antioksidan enzim CAT olurken, bunu SOD ve GPX izlemiştir. Genel olarak, CAT ve GSH düzeylerinde artış yönünde bir eğilim görülürken, SOD ve GPX düzeylerinde azalış yönünde bir eğilim gözlenmiştir. Bu çalışma, su kimyasının balık antioksidan sistemi ve metal toksisitesi üzerinde etkileri olduğunu vurgulamıştır. Böyle çalışmalar farklı bölgelerden elde edilen balık biyomarkırlarının değerlendirilmesinde ve çevresel gözlemlerde yararlı olabilmektedir.

References

  • Ahmad, I., Oliveira, M., Pacheco, M., and Santos, M.A. 200 Anguilla anguilla L. oxidative stress biomarkers responses to copper exposure with or without βnaphthoflavone pre-exposure. Chemosphere, 61: 267– 2 doi:10.1016/j.chemosphere.2005.01.069.
  • Alak, G., Atamanalp, M., Topal, A., Arslan, H., Oruç, E., and Altun, S. 20 Histopathological and biochemical effects of humic acid against cadmium toxicity in brown trout gills and muscles. Turkish Journal of Fisheries and Aquatic Sciences, 13: 3153 doi: 10.4194/1303-2712-v13_2_13.
  • Atli, G., and Canli, M. 2003. Natural occurrence of metallothionein-like proteins in the liver of fish Oreochromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bulletin of Environmental Contamination and Toxicology, 70: 619–627. doi: 10.1007/s00128-0030030Atli, G., Alptekin, Ö., Tükel, S., and Canli, M. 2006. Response of catalase activity to Ag +, Cd 2+ , Cr 6+ , Cu 2+ and Zn 2+ in five tissues of freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology, 143C: 218–224. doi:1016/j.cbpc.2006.02.003.
  • Atli, G., and Canli, M. 2007. Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology, 145C: 282–287. doi: 10.1016/j.cbpc.2006.12.012.
  • Atli, G., and Canli, M. 2008. Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environmental Toxicology and Pharmacology, 25: 33– doi:10.1016/j.etap.2007.08.007.
  • Atli, G., and Canli, M. 2010. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicology and Environmental Safety, 73: 1884-1889. doi:10.1016/j.ecoenv.2010.09.005.
  • Avci, A., Kaçmaz, M., and Durak, I. 2005. Peroxidation in muscle and liver tissues from fish in a contaminated river due to a petroleum refinery industry. Ecotoxicology and Environmental Safety, 6: 101–105. doi:1016/j.ecoenv.2003.10.003.
  • Ay, Ö., Kalay, M., Tamer, L., and Canli, M. 1999. Copper and lead accumulation in tissues of a freshwater fish Tilapia zillii and its effects on the branchial Na, KATPase activity. Bulletin of Environmental Contamination and Toxicology, 62: 160–168.
  • Barata, C., Varob, I., Navarro, J.C., Arun, S., Porte, C. 200 Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology, 140: 175– 1 doi:10.1016/j.cca.2005.01.013.
  • Basha, P.S., and Rani, A.U. 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicology and Environmental Safety, 56: 218–221. doi:1016/S0147-6513(03)00028-9.
  • Baysoy, E., Atli, G., Gürler, C.Ö., Dogan, Z., Eroglu, A., Kocalar, K., and Canli, M. 2012. The effects of increased freshwater salinity in the biodisponibility of metals (Cr, Pb) and effects on antioxidant systems of Oreochromis niloticus. Ecotoxicology and Environmental Safety, 84: 249–253. doi:1016/j.ecoenv.2012.07.017.
  • Berntssen, M.H.G., Lundebye, A.K., and Hamre, K. 2000. Tissue lipid peroxidative responses in Atlantic salmon (Salmo salar L.) parr fed high levels of dietary copper and cadmium. Fish Physiology and Biochemistry, 23: 35Bessey, O.A., Lowry, O.H., and Brock, M.J. 1946. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. The Journal of Biological Chemistry, 164: 321–329.
  • Beutler, E., Duron, O., and Kelly, B.M. 1963. Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61: 882–890.
  • Blanchard, J., and Grosell, M., 2006. Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: Is copper an ionoregulatory toxicant in high salinities? Aquatic Toxicology, 80: 131-139. doi:1016/j.aquatox.2006.08.001.
  • Bury, N.R., Shaw, J., Glover, C., and Hogstrand, C. 2002. Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates. Comparative Biochemistry and Physiology, 133: 259–270. doi:1016/S15320456(02)00096-0.
  • Carlberg, I., and Mannervik, B. 1975. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. The Journal of Biological Chemistry, 250: 5475–5480.
  • Dautremepuits, C., Paris-Palacios, S., Betoulle, S., and Vernet, G. 2004. Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comparative Biochemistry and Physiology, 137: 325–333. doi:1016/j.cca.2004.03.005.
  • De Boeck, G., Smolders, R., and Blust, R. 2010. Copper toxicity in gibel carp Carassius auratus gibelio: Importance of sodium and glycogen. Comparative Biochemistry and Physiology, 152C: 332–337. doi:1016/j.cbpc.2010.05.008.
  • Dewez, D., Geoffroy, L., Vernet, G., and Popovic, R. 2005. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonilin alga Scenedesmus obliquus. Aquatic Toxicology, 74: 150–159. doi: 1016/j.aquatox.2005.05.007.
  • Elia, A.C., Galarini, R., Taticchi, M.I., Dörr, A.J.M., and Mantilacci, L. 2003. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55: 162–167. doi:10.1016/S0147-6513(02)00123-9.
  • Ercal, N., Gurer-Orhan, H., Aykin-Burns, N. 2001. Toxic metals and oxidative stress part I: mechanisms involved in induced oxidative damage. Current Topics in Medical Chemistry, 1: 529–539. doi: 2174/1568026013394831.
  • Ezemonye, L.I.N. and Enuneku, A.A. 2011. Biochemical alterations in Hoplobatrachus occipitalis exposed to sublethal concentrations of cadmium. Turkish Journal of Fisheries and Aquatic Sciences, 11: 485-489. doi: 4194/1303-2712-v11_3_21.
  • Fei, Y., Shiming, P., Peng, S., and Zhaohong, S. 2011. Effect of low salinity on digestive enzyme activities in the intestinal tract of juvenile silver pomfret Pampus argenteus. Acta Ecologica Sinica, 31: 55-60. doi: 1016/j.chnaes.2010.11.009.
  • Garcia Sampaio, F.G., Boijink, C.L., Oba, E.T., Santos, L.R.B., Kalinin, A.L., and Rantin, F.T. 2008. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comparative Biochemistry and Physiology, 147: 43– doi:10.1016/j.cbpc.2012.07.002.
  • Grosell, M., Nielsen, C., and Bianchini, A. 2002. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comparative Biochemistry and Physiology, 133: 28730 doi: 10.1016/S1532-0456(02)00085-6.
  • Gul, S., Belge-Kurutas, E., Yıldız, E., Sahan, A., and Doran, F. 2004. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. Environmental International, 30: 605–609. doi: 1016/S0160-4120(03)00059-X.
  • Habig, W.H., Pabst, M.J., and Jakoby, W.B. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Biological Chemistry, 249: 7130–7139.
  • Heath, A.G. 1987. Water Pollution and Fish Physiology. CRC Press, Florida, USA.
  • Hidalgo, M.C., Exposito, A., Palma, J.M., Higuera, M. 200 Oxidative stress generated by dietary Zndeficiency: Studies in rainbow trout (Oncorhynchus mykiss). The International Journal of Biochemistry & Cell Biology, 34: 183–193. doi: 10.1016/S13572725(01)00105-4.
  • Kulac, B., Atli, G., Canli, M. 2012. Investigations on the ATPase activities and cadmium uptake in freshwater fish Oreochromis niloticus following exposures to cadmium in ıncreased salinity. Turkish Journal of Fisheries and Aquatic Sciences, 12: 861-869. doi:4194/1303-2712-v1241_14.
  • Lauren, D.J, McDonald, D.G. 1987. Acclimation to copper by rainbow trout, Salmo gairdneri: biochemistry. Canadian Journal of Fisheries and Aquatic Science, 44: 105–111.
  • Lima, P.L., Benassi, J.C., Pedrosa, R.C., Dal Magro, J., Oliveira, T.B., Wilhelm Filho, D. 2006. Time-course variations of DNA damage and biomarkers of oxidative stress in tilapia (Oreochromis niloticus) exposed to effluents from a Swine industry. Archives of Environmental Contamination and Toxicology, 50: 23– doi: 10.1007/s00244-004-0178-x.
  • Livingstone, D.R., Lips, F., Martinez, P.G., and Pipe, R.K. 19 Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Marine Biology, 112: 265–276. Lowry, O.H., Rosebrough, N.J., Farra, N.J., Randall, R.J. 19 Protein measurements with the folin phenol reagent. The Journal of Biological Chemistry, 193: 265–275. Martinez-Alvares, R.M., Morales, A.E., Sanz, A. 2005. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15: 75- doi: 10.1007/s11160-005-7846-4.
  • McCord, J.M., Fridovich, I. 1969. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry, 244: 6049–6055.
  • Monserrat, J.M., Martinez, P.E., Geracitano, L.A., Amado, L.L., Martins, C.M.G., Pinho, G.L.L., Chaves, I.S.C., Ferreira-Cravo, M., Ventura-Lima, J., Bianchini, A. 200 Pollution biomarkers in estuarine animals: critical review and new perspectives. Comparative Biochemistry and Physiology, 146: 221–234. doi:1016/j.cbpc.2006.08.012.
  • Nagalakshmi, N., Prasad, M.N.V. 1998. Copper-induced oxidative stres in Scenedesmus bijugatus: protective role of free radical scavengers. Bulletin of Environmental Contamination and Toxicology, 61: 623–628.
  • Orun, I., Selamoglu, Talas, Z., Ozdemir, I., Alkan, A., Erdogan, K. 2008. Antioxidative role of selenium on some tissues of (Cd 2+ , Cr 3+ )-induced rainbow trout. Ecotoxicology and Environmental Safety, 71: 71-75. doi:1016/j.ecoenv.2007.07.008.
  • Pinto, E., Sigaud-Kutner, T.C.S., Leitao, M.A.S., Okamoto, O.K., Morse, D., and Colepicolo, P. 2003. Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39: 1008–1018. doi: 10.1111/j.0022362003.02-193.x.
  • Radi, A.A.R., and Matkovics, B. 1988. Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissues. Comparative Biochemistry and Physiology, 90C: 69–72.
  • Romeo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., and Girard, J.P. 2000. Cadmium and copper display different responses towardsoxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 48: 185–194.
  • Ruas, C.B.G., Carvalho, C.S., Araujo, H.S.S., Espindola, E.L.G., and Fernandes, M.N. 2008 Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicology and Environmental Safety, 71: 86–93. doi:1016/j.ecoenv.2007.08.018.
  • Sanchez, W., Palluel, O., Meunier, L., Coquery, M., Porcher, J.M., and Ait-Aissa, S. 2005 Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environmental Toxicology and Pharmacology, 19: 177–183. doi:1016/j.etap.2004.07.003.
  • Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., and Raisuddin, S. 2003. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus. Bloch. Ecotoxicology and Environmental Safety, 56: 295–301. doi:1016/S0147-6513(03)00009-5.
  • Schlenk, D., and Benson, W.H. 2001. Target organ toxicity in marine and freshwater teleosts. Taylor and Francis, London.
  • Srikanth, K., Pereira, E., Duarte, A.C., and Ahmad, I. 2013. Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review. Environmental Science and Pollution Research International, 20: 2133-2149. doi:1007/s11356-012-1459-y.
  • Trenzado, C., Hidalgo, C.H., Garcia-Gallego, M., Morales, A.E., Furne, M., Domezain, A., Domezain, J., Sanz, A. 2006. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Onchorhynchus mykiss. A comparative study. Aquaculture, 254: 758-767. doi:1016/j.aquaculture.2005.11.020.
  • Tripathi, B.N., Mehta, S.K., Amar, A., Gaur, J.P. 2006. Oxidative stress in Scenedesmus sp. during short-and long-term exposure to Cu 2+ and Zn 2+ . Chemosphere, 62: 538–544. doi:10.1016/j.chemosphere.2005.06.031.
  • USEPA, 2001. Update of ambient water quality criteria for cadmium, EPA-822-R-01–001. Washington, DC, USA.
  • USEPA, 2007. Aquatic life ambient freshwater quality criteria for copper, EPA-822-R-07-001. Washington, DC, USA.
  • Vega-Lopez, A., Jimenez-Orozco, F.A., Garcia-Latorre, E., Dominguez-Lopez, M.L. 2008. Oxidative stress response in endangered goodeid fish (Girardinichthys viviparus) by exposure to water from its extant localities. Ecotoxicology and Environmental Safety, 71: 94-103. doi:10.1016/j.ecoenv.2007.10.031.
  • Vutukuru, S.S., Chintada, S., Madhavi, K.R., Rao, J.V., Anjaneyulu, Y. 2006. Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiology and Biochemistry, 32: 221-229. doi: 1007/s10695-006-9004-x.

Response of the Antioxidant System of Freshwater Fish (Oreochromis niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness

Year 2014, Volume: 14 Issue: 1, - , 07.07.2014
https://doi.org/10.4194/1303-2712-v14_1_06

Abstract

Freshwater hardness affects metal toxicity and fish physiology. Therefore, the effects of dissolved metals on fish physiology may differ in waters from different geographic regions. In this study, toxic effects of Cd and Cu (1 mg/L) on the antioxidant system of freshwater fish Oreochromis niloticus were investigated in two different waters (commercial and tap water). Fish were exposed to metals in hard water ( 320 mg CaCO/ L, conductivity 5.80 mS/cm) and soft water ( 80 mg CaCO / L, conductivity 1.77 mS/cm) for 1, 7 and 14 days and consequently the activities of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and total glutathione (GSH) levels were measured spectrophotometrically. Cu exposure of fish in soft water caused fish mortality after 8 days, though there was no fish mortality in the other conditions. The antioxidant system of fish responded differently to metal exposures in waters with differing hardness. Metal exposures in soft water showed predominant effects on the antioxidant system of fish comparing to hard water exposures. Similarly, antioxidant enzyme activities also altered in control fish depending on the hardness of waters. In general, CAT was the most sensitive antioxidant enzyme followed by SOD and GPX. CAT and GSH showed an increasing trend while a decreasing trend was observed for SOD and GPX. This study emphasized that the water chemistry affects the fish antioxidant system and metal toxicity that may be useful in environmental monitoring and also evaluating biomarkers in fish from different regions.

References

  • Ahmad, I., Oliveira, M., Pacheco, M., and Santos, M.A. 200 Anguilla anguilla L. oxidative stress biomarkers responses to copper exposure with or without βnaphthoflavone pre-exposure. Chemosphere, 61: 267– 2 doi:10.1016/j.chemosphere.2005.01.069.
  • Alak, G., Atamanalp, M., Topal, A., Arslan, H., Oruç, E., and Altun, S. 20 Histopathological and biochemical effects of humic acid against cadmium toxicity in brown trout gills and muscles. Turkish Journal of Fisheries and Aquatic Sciences, 13: 3153 doi: 10.4194/1303-2712-v13_2_13.
  • Atli, G., and Canli, M. 2003. Natural occurrence of metallothionein-like proteins in the liver of fish Oreochromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bulletin of Environmental Contamination and Toxicology, 70: 619–627. doi: 10.1007/s00128-0030030Atli, G., Alptekin, Ö., Tükel, S., and Canli, M. 2006. Response of catalase activity to Ag +, Cd 2+ , Cr 6+ , Cu 2+ and Zn 2+ in five tissues of freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology, 143C: 218–224. doi:1016/j.cbpc.2006.02.003.
  • Atli, G., and Canli, M. 2007. Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology, 145C: 282–287. doi: 10.1016/j.cbpc.2006.12.012.
  • Atli, G., and Canli, M. 2008. Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environmental Toxicology and Pharmacology, 25: 33– doi:10.1016/j.etap.2007.08.007.
  • Atli, G., and Canli, M. 2010. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicology and Environmental Safety, 73: 1884-1889. doi:10.1016/j.ecoenv.2010.09.005.
  • Avci, A., Kaçmaz, M., and Durak, I. 2005. Peroxidation in muscle and liver tissues from fish in a contaminated river due to a petroleum refinery industry. Ecotoxicology and Environmental Safety, 6: 101–105. doi:1016/j.ecoenv.2003.10.003.
  • Ay, Ö., Kalay, M., Tamer, L., and Canli, M. 1999. Copper and lead accumulation in tissues of a freshwater fish Tilapia zillii and its effects on the branchial Na, KATPase activity. Bulletin of Environmental Contamination and Toxicology, 62: 160–168.
  • Barata, C., Varob, I., Navarro, J.C., Arun, S., Porte, C. 200 Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology, 140: 175– 1 doi:10.1016/j.cca.2005.01.013.
  • Basha, P.S., and Rani, A.U. 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicology and Environmental Safety, 56: 218–221. doi:1016/S0147-6513(03)00028-9.
  • Baysoy, E., Atli, G., Gürler, C.Ö., Dogan, Z., Eroglu, A., Kocalar, K., and Canli, M. 2012. The effects of increased freshwater salinity in the biodisponibility of metals (Cr, Pb) and effects on antioxidant systems of Oreochromis niloticus. Ecotoxicology and Environmental Safety, 84: 249–253. doi:1016/j.ecoenv.2012.07.017.
  • Berntssen, M.H.G., Lundebye, A.K., and Hamre, K. 2000. Tissue lipid peroxidative responses in Atlantic salmon (Salmo salar L.) parr fed high levels of dietary copper and cadmium. Fish Physiology and Biochemistry, 23: 35Bessey, O.A., Lowry, O.H., and Brock, M.J. 1946. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. The Journal of Biological Chemistry, 164: 321–329.
  • Beutler, E., Duron, O., and Kelly, B.M. 1963. Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61: 882–890.
  • Blanchard, J., and Grosell, M., 2006. Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: Is copper an ionoregulatory toxicant in high salinities? Aquatic Toxicology, 80: 131-139. doi:1016/j.aquatox.2006.08.001.
  • Bury, N.R., Shaw, J., Glover, C., and Hogstrand, C. 2002. Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates. Comparative Biochemistry and Physiology, 133: 259–270. doi:1016/S15320456(02)00096-0.
  • Carlberg, I., and Mannervik, B. 1975. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. The Journal of Biological Chemistry, 250: 5475–5480.
  • Dautremepuits, C., Paris-Palacios, S., Betoulle, S., and Vernet, G. 2004. Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comparative Biochemistry and Physiology, 137: 325–333. doi:1016/j.cca.2004.03.005.
  • De Boeck, G., Smolders, R., and Blust, R. 2010. Copper toxicity in gibel carp Carassius auratus gibelio: Importance of sodium and glycogen. Comparative Biochemistry and Physiology, 152C: 332–337. doi:1016/j.cbpc.2010.05.008.
  • Dewez, D., Geoffroy, L., Vernet, G., and Popovic, R. 2005. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonilin alga Scenedesmus obliquus. Aquatic Toxicology, 74: 150–159. doi: 1016/j.aquatox.2005.05.007.
  • Elia, A.C., Galarini, R., Taticchi, M.I., Dörr, A.J.M., and Mantilacci, L. 2003. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55: 162–167. doi:10.1016/S0147-6513(02)00123-9.
  • Ercal, N., Gurer-Orhan, H., Aykin-Burns, N. 2001. Toxic metals and oxidative stress part I: mechanisms involved in induced oxidative damage. Current Topics in Medical Chemistry, 1: 529–539. doi: 2174/1568026013394831.
  • Ezemonye, L.I.N. and Enuneku, A.A. 2011. Biochemical alterations in Hoplobatrachus occipitalis exposed to sublethal concentrations of cadmium. Turkish Journal of Fisheries and Aquatic Sciences, 11: 485-489. doi: 4194/1303-2712-v11_3_21.
  • Fei, Y., Shiming, P., Peng, S., and Zhaohong, S. 2011. Effect of low salinity on digestive enzyme activities in the intestinal tract of juvenile silver pomfret Pampus argenteus. Acta Ecologica Sinica, 31: 55-60. doi: 1016/j.chnaes.2010.11.009.
  • Garcia Sampaio, F.G., Boijink, C.L., Oba, E.T., Santos, L.R.B., Kalinin, A.L., and Rantin, F.T. 2008. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comparative Biochemistry and Physiology, 147: 43– doi:10.1016/j.cbpc.2012.07.002.
  • Grosell, M., Nielsen, C., and Bianchini, A. 2002. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comparative Biochemistry and Physiology, 133: 28730 doi: 10.1016/S1532-0456(02)00085-6.
  • Gul, S., Belge-Kurutas, E., Yıldız, E., Sahan, A., and Doran, F. 2004. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. Environmental International, 30: 605–609. doi: 1016/S0160-4120(03)00059-X.
  • Habig, W.H., Pabst, M.J., and Jakoby, W.B. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Biological Chemistry, 249: 7130–7139.
  • Heath, A.G. 1987. Water Pollution and Fish Physiology. CRC Press, Florida, USA.
  • Hidalgo, M.C., Exposito, A., Palma, J.M., Higuera, M. 200 Oxidative stress generated by dietary Zndeficiency: Studies in rainbow trout (Oncorhynchus mykiss). The International Journal of Biochemistry & Cell Biology, 34: 183–193. doi: 10.1016/S13572725(01)00105-4.
  • Kulac, B., Atli, G., Canli, M. 2012. Investigations on the ATPase activities and cadmium uptake in freshwater fish Oreochromis niloticus following exposures to cadmium in ıncreased salinity. Turkish Journal of Fisheries and Aquatic Sciences, 12: 861-869. doi:4194/1303-2712-v1241_14.
  • Lauren, D.J, McDonald, D.G. 1987. Acclimation to copper by rainbow trout, Salmo gairdneri: biochemistry. Canadian Journal of Fisheries and Aquatic Science, 44: 105–111.
  • Lima, P.L., Benassi, J.C., Pedrosa, R.C., Dal Magro, J., Oliveira, T.B., Wilhelm Filho, D. 2006. Time-course variations of DNA damage and biomarkers of oxidative stress in tilapia (Oreochromis niloticus) exposed to effluents from a Swine industry. Archives of Environmental Contamination and Toxicology, 50: 23– doi: 10.1007/s00244-004-0178-x.
  • Livingstone, D.R., Lips, F., Martinez, P.G., and Pipe, R.K. 19 Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Marine Biology, 112: 265–276. Lowry, O.H., Rosebrough, N.J., Farra, N.J., Randall, R.J. 19 Protein measurements with the folin phenol reagent. The Journal of Biological Chemistry, 193: 265–275. Martinez-Alvares, R.M., Morales, A.E., Sanz, A. 2005. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15: 75- doi: 10.1007/s11160-005-7846-4.
  • McCord, J.M., Fridovich, I. 1969. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry, 244: 6049–6055.
  • Monserrat, J.M., Martinez, P.E., Geracitano, L.A., Amado, L.L., Martins, C.M.G., Pinho, G.L.L., Chaves, I.S.C., Ferreira-Cravo, M., Ventura-Lima, J., Bianchini, A. 200 Pollution biomarkers in estuarine animals: critical review and new perspectives. Comparative Biochemistry and Physiology, 146: 221–234. doi:1016/j.cbpc.2006.08.012.
  • Nagalakshmi, N., Prasad, M.N.V. 1998. Copper-induced oxidative stres in Scenedesmus bijugatus: protective role of free radical scavengers. Bulletin of Environmental Contamination and Toxicology, 61: 623–628.
  • Orun, I., Selamoglu, Talas, Z., Ozdemir, I., Alkan, A., Erdogan, K. 2008. Antioxidative role of selenium on some tissues of (Cd 2+ , Cr 3+ )-induced rainbow trout. Ecotoxicology and Environmental Safety, 71: 71-75. doi:1016/j.ecoenv.2007.07.008.
  • Pinto, E., Sigaud-Kutner, T.C.S., Leitao, M.A.S., Okamoto, O.K., Morse, D., and Colepicolo, P. 2003. Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39: 1008–1018. doi: 10.1111/j.0022362003.02-193.x.
  • Radi, A.A.R., and Matkovics, B. 1988. Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissues. Comparative Biochemistry and Physiology, 90C: 69–72.
  • Romeo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., and Girard, J.P. 2000. Cadmium and copper display different responses towardsoxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 48: 185–194.
  • Ruas, C.B.G., Carvalho, C.S., Araujo, H.S.S., Espindola, E.L.G., and Fernandes, M.N. 2008 Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicology and Environmental Safety, 71: 86–93. doi:1016/j.ecoenv.2007.08.018.
  • Sanchez, W., Palluel, O., Meunier, L., Coquery, M., Porcher, J.M., and Ait-Aissa, S. 2005 Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environmental Toxicology and Pharmacology, 19: 177–183. doi:1016/j.etap.2004.07.003.
  • Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., and Raisuddin, S. 2003. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus. Bloch. Ecotoxicology and Environmental Safety, 56: 295–301. doi:1016/S0147-6513(03)00009-5.
  • Schlenk, D., and Benson, W.H. 2001. Target organ toxicity in marine and freshwater teleosts. Taylor and Francis, London.
  • Srikanth, K., Pereira, E., Duarte, A.C., and Ahmad, I. 2013. Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review. Environmental Science and Pollution Research International, 20: 2133-2149. doi:1007/s11356-012-1459-y.
  • Trenzado, C., Hidalgo, C.H., Garcia-Gallego, M., Morales, A.E., Furne, M., Domezain, A., Domezain, J., Sanz, A. 2006. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Onchorhynchus mykiss. A comparative study. Aquaculture, 254: 758-767. doi:1016/j.aquaculture.2005.11.020.
  • Tripathi, B.N., Mehta, S.K., Amar, A., Gaur, J.P. 2006. Oxidative stress in Scenedesmus sp. during short-and long-term exposure to Cu 2+ and Zn 2+ . Chemosphere, 62: 538–544. doi:10.1016/j.chemosphere.2005.06.031.
  • USEPA, 2001. Update of ambient water quality criteria for cadmium, EPA-822-R-01–001. Washington, DC, USA.
  • USEPA, 2007. Aquatic life ambient freshwater quality criteria for copper, EPA-822-R-07-001. Washington, DC, USA.
  • Vega-Lopez, A., Jimenez-Orozco, F.A., Garcia-Latorre, E., Dominguez-Lopez, M.L. 2008. Oxidative stress response in endangered goodeid fish (Girardinichthys viviparus) by exposure to water from its extant localities. Ecotoxicology and Environmental Safety, 71: 94-103. doi:10.1016/j.ecoenv.2007.10.031.
  • Vutukuru, S.S., Chintada, S., Madhavi, K.R., Rao, J.V., Anjaneyulu, Y. 2006. Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiology and Biochemistry, 32: 221-229. doi: 1007/s10695-006-9004-x.
There are 51 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Dilek Saglam This is me

Gülüzar Atli This is me

Zehra Dogan This is me

Emine Baysoy This is me

Ceren Gurler This is me

Ali Eroglu This is me

Mustafa Canli This is me

Publication Date July 7, 2014
Published in Issue Year 2014 Volume: 14 Issue: 1

Cite

APA Saglam, D., Atli, G., Dogan, Z., Baysoy, E., et al. (2014). Response of the Antioxidant System of Freshwater Fish (Oreochromis niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness. Turkish Journal of Fisheries and Aquatic Sciences, 14(1). https://doi.org/10.4194/1303-2712-v14_1_06
AMA Saglam D, Atli G, Dogan Z, Baysoy E, Gurler C, Eroglu A, Canli M. Response of the Antioxidant System of Freshwater Fish (Oreochromis niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness. Turkish Journal of Fisheries and Aquatic Sciences. February 2014;14(1). doi:10.4194/1303-2712-v14_1_06
Chicago Saglam, Dilek, Gülüzar Atli, Zehra Dogan, Emine Baysoy, Ceren Gurler, Ali Eroglu, and Mustafa Canli. “Response of the Antioxidant System of Freshwater Fish (Oreochromis Niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness”. Turkish Journal of Fisheries and Aquatic Sciences 14, no. 1 (February 2014). https://doi.org/10.4194/1303-2712-v14_1_06.
EndNote Saglam D, Atli G, Dogan Z, Baysoy E, Gurler C, Eroglu A, Canli M (February 1, 2014) Response of the Antioxidant System of Freshwater Fish (Oreochromis niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness. Turkish Journal of Fisheries and Aquatic Sciences 14 1
IEEE D. Saglam, G. Atli, Z. Dogan, E. Baysoy, C. Gurler, A. Eroglu, and M. Canli, “Response of the Antioxidant System of Freshwater Fish (Oreochromis niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness”, Turkish Journal of Fisheries and Aquatic Sciences, vol. 14, no. 1, 2014, doi: 10.4194/1303-2712-v14_1_06.
ISNAD Saglam, Dilek et al. “Response of the Antioxidant System of Freshwater Fish (Oreochromis Niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness”. Turkish Journal of Fisheries and Aquatic Sciences 14/1 (February 2014). https://doi.org/10.4194/1303-2712-v14_1_06.
JAMA Saglam D, Atli G, Dogan Z, Baysoy E, Gurler C, Eroglu A, Canli M. Response of the Antioxidant System of Freshwater Fish (Oreochromis niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness. Turkish Journal of Fisheries and Aquatic Sciences. 2014;14. doi:10.4194/1303-2712-v14_1_06.
MLA Saglam, Dilek et al. “Response of the Antioxidant System of Freshwater Fish (Oreochromis Niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness”. Turkish Journal of Fisheries and Aquatic Sciences, vol. 14, no. 1, 2014, doi:10.4194/1303-2712-v14_1_06.
Vancouver Saglam D, Atli G, Dogan Z, Baysoy E, Gurler C, Eroglu A, Canli M. Response of the Antioxidant System of Freshwater Fish (Oreochromis niloticus) Exposed to Metals (Cd, Cu) in Differing Hardness. Turkish Journal of Fisheries and Aquatic Sciences. 2014;14(1).