Laboratory assessments of toxicity and bioaccumulation of heavy metals have been concentrated on the accumulation of these metal ions when exposed singly to the test organisms. However, under the natural environmental settings, the metals are never present in isolation and may interact with each other, therefore justifying the need to study the influence of joint application of metals on accumulated levels in exposed animals. In this study, exposure of the periwinkle Littorina saxatilis to sublethal concentrations (equivalent to 0.1 and 0.01 of 96 h LC50) of heavy metals revealed that they were bioaccumulative varying amounts, depending on the type of metal, exposure period and their concentration in the test media. While Zn and Pb ion accumulation increased steadily with exposure time, the amounts of Cu accumulated fluctuated regularly over the 30-day experimental period. The levels of Zn, Cu and Cd bioaccumulated over the 30-day experimental period were reduced by over 2-6 folds (with bioaccumulation ratio values ranging from 0.15 to 0.81) when compared to concentrations of the respective metals accumulated during single bioaccumulation studies. However, Pb concentrations accumulated during the joint action studies increased nearly 2-fold (bioaccumulation ratio range 1.36 to 2.0-fold).
Laboratory assessments of toxicity and bioaccumulation of heavy metals have been concentrated on the accumulation of these metal ions when exposed singly to the test organisms. However, under the natural environmental settings, the metals are never present in isolation and may interact with each other, therefore justifying the need to study the influence of joint application of metals on accumulated levels in exposed animals. In this study, exposure of the periwinkle Littorina saxatilis to sublethal concentrations (equivalent to 0.1 and 0.01 of 96 h LC50) of heavy metals revealed that they were bioaccumulative varying amounts, depending on the type of metal, exposure period and their concentration in the test media. While Zn and Pb ion accumulation increased steadily with exposure time, the amounts of Cu accumulated fluctuated regularly over the 30-day experimental period. The levels of Zn, Cu and Cd bioaccumulated over the 30-day experimental period were reduced by over 2-6 folds (with bioaccumulation ratio values ranging from 0.15 to 0.81) when compared to concentrations of the respective metals accumulated during single bioaccumulation studies. However, Pb concentrations accumulated during the joint action studies increased nearly 2-fold (bioaccumulation ratio range 1.36 to 2.0-fold).
Primary Language | Turkish |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | June 1, 2012 |
Published in Issue | Year 2012 Volume: 12 Issue: 3 |