Research Article
BibTex RIS Cite

SCREENING OF ACTINOMYCETES FROM Cystoseira barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES

Year 2022, , 113 - 124, 15.10.2022
https://doi.org/10.23902/trkjnat.1059974

Abstract

Bacterial secondary metabolites play an essential role in biotechnological and biomedical applications. Actinomycetes are important bacterial sources of antibiotics and enzymes. Most of the antimicrobials known today have been isolated from actinomycetes, especially from the genus Streptomyces. In this study, actinomycete isolation was performed from Cystoseira barbata (Stackhouse) C. Agardh compost, collected from the Black Sea coast, by serial dilution method. A total of 73 actinomycetes isolates (BSC) were obtained from the compost samples. The ability of the isolates to produce different extracellular enzymes was investigated qualitatively. It was determined that 68.5% of the isolates have amylase, 100% cellulase, 47.9% chitinase, 94.5% pectinase, 98.6% protease and 96.3% lipase/esterase activity. Antibacterial activities of the isolates were investigated primarily using cross-streak method. Isolates showed high antibacterial activities, with 98.6 and 84.9 % against Staphylococcus aureus Rosenbach and Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper-Bäl, respectively. Three out of six isolates (BSC-13, BSC-17, BSC-37, BSC-38, BSC-45, BSC-49) with high antibacterial activity, were screened secondarily for their antibacterial activities using double-layer method. At day 7, BSC-37 isolate showed a high inhibition (57 mm) against S. aureus. Furthermore, these six isolates were identified according to their morphological and physiological characteristics and 16S rDNA sequence analysis. 16S rDNA sequence analysis showed that the isolates with high antibacterial activity belong to Streptomyces genus. Results indicated that these isolates have great potential and may serve as a good source for the studies on bioactive natural products.

Supporting Institution

GRU-BAP

Project Number

FEN-BAP-A-140316-52

Thanks

A part of this study was supported by the GRU-BAP with the project number FEN-BAP-A-140316-52.

References

  • 1. Adamu, A.A., Ibrahim, N., John, O. & Matilda, A.O. 2017. Production of novel antifungal compounds from actinomycetes isolated from waste dump soil in western Uganda. African Journal of Microbiology Research, 11(30): 1200-1210. doi: 10.5897/AJMR2017.8588
  • 2. Amore, A., Pepe, O., Ventorino, V., Birolo, L., Giangrande, C. & Faraco, V. 2012. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost. Microbial Cell Factories, 11(164): 1-12. doi: 10.1186/1475-2859-11-164
  • 3. Azzeddine, B., Abdelaziz, M., Estelle, C., Mouloud, K., Nawel, B., Nabila, B., Francis, D. & Said, B. 2013. Optimization and partial characterization of endoglucanase produced by Streptomyces sp. B-PNG23. Archives of Biological Sciences, 65(2): 549-558. doi: 10.2298/ABS1302549A
  • 4. Bernan, V.S., Greenstein, M. & Carter, G.T. 2004. Mining marine microorganisms as a source of new antimicrobials and antifungals. Current Medicinal Chemistry-Anti-Infective Agents, 3(3): 181-195. doi: 10.2174/1568012043353883
  • 5. Bi, B.Z., Dayanand, A. & Ambika, P. 2017. Development of paper biosensor for the detection of phenol from industrial effluents using bioconjugate of Tyr-AuNps mediated by novel isolate Streptomyces tuirus DBZ39. Journal of Nanomaterials, 2017: 1-8. doi: 10.1155/2017/1352134
  • 6. Bragger, J.M, Daniel, R.M. & Morgan, H.W. 1989. Very stable enzymes from extremely thermophilic archaebacteria and eubabacteria. Applied Microbiology & Biotechnology, 31: 556-561.
  • 7. Brosius, J., Palmer, M.L., Kennedy, P.J. & Noller, H.F. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 75(10): 4801-4805. doi: 10.1073/pnas.75.10.4801
  • 8. Cuesta, G., García-de-la-Fuente, R., Abad, M. & Fornes, F. 2012. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents. Journal of Environmental Management, 95: 280-284. doi: /10.1016/j.jenvman.2010.11.023
  • 9. Dharmaraj, S. 2010. Marine Streptomyces as a novel source of bioactive substance. World Journal of Microbiology & Biotechnology, 26(12): 2123-2139. doi: 10.1007/s11274-010-0415-6
  • 10. Dornelas, J.C.M., Figueiredo, J.E.F., de Abreu, C.S., Lana, U.G.P., Oliveira, C.A. & Mariel, I.E. 2017. Characterization and phylogenetic affiliation of Actinobacteria from tropical soils with potential uses for agro-industrial processes. Genetics & Molecular Research, 16(3): 1-16. doi: 10.4238/gmr16039703
  • 11. Gautham, S.A., Shobha, K.S., Onkarappa, R. & Prashith Kekuda, T.R. 2012. Isolation, characterisation and antimicrobial potential of Streptomyces species from Western Ghats of Karnataka, India. Research Journal of Pharmacy & Technology, 5(2): 233-238.
  • 12. Goodfellow, M. & Williams, S.T. 1983. Ecology of actinomycetes. Annual Review of Microbiology, 37(1): 189-216. doi: 10.1146/annurev.mi.37.100183.001201
  • 13. Goodfellow, M. & Fiedler, H.P. 2010. A guide to successful bioprospecting: informed by Actinobacterial systematics. Antonie van Leeuwenhoek, 98(2): 119-142. doi: 10.1007/s10482-010-9460-2
  • 14. Groth, I., Schumann, P., Rainey, F.A., Martin, K., Schuetze, B. & Augsten, K. 1997. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. International Journal of Systematic Bacteriology, 47(4): 1129-1133. doi: 10.1099/00207713-47-4–1129
  • 15. Gulve, R.M. & Deshmukh, A.M. 2012. Antimicrobial activity of the marine actinomycetes. International Multidisciplinary Research Journal, 2(3): 16-22.
  • 16. Haba, E., Bresco, O., Ferrer, C., Marques, A., Basguets, M. & Manresa, A. 2000. Isolation of lipase secreting bacteria by deploying used frying oil as selective substrate. Enzyme & Microbial Technology, 26: 40-44.
  • 17. Holt, J.G., Krieg, R.N., Sneath, P.H.A., Staley, J.T. & Williams, S.T. 2000. Bergey’s Manual of Determinative Bacteriology. 9th edn Lippincott Williams and Wilkins, Baltimore, Maryland, 787 pp.
  • 18. Imada, C., Masuda, S., Kobayashi, T., Hamada-Sato, N. & Nakashima, T. 2010. Isolation and characterization of marine and terrestrial actinomycetes using a medium supplemented with NaCl. Actinomycetologica, 24(1): 12-17. doi: 10.3209/saj.SAJ240104
  • 19. Jagannathan, S.V., Manemann, E.M., Rowe, S.E., Callender, M.C. & Soto, W. 2021. Marine actinomycetes, new sources of biotechnological products. Marine Drugs, 19(7): 365. doi: 10.3390/md19070365 20. Janaki, T. 2017. Enzymes from actinomycetes. International Journal of ChemTech Research, 10(3): 326-332.
  • 21. Jang, H.D. & Chen, K.S. 2003. Production and characterisation of thermostable cellulase from Streptomyces transformant T3-1. World Journal of Microbiology & Biotechnology, 19: 263-268.
  • 22. Jang, H.D. & Chang, K.S. 2005. Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-l fermenter. Biotechnology Letters, 27(4): 239-242. doi:10.1007/s10529-004-8356-5
  • 23. Jayaprakashvel, M., Ramesh, S., Sownthararajan, K. & Mathivanan, N. 2008. Marine bacterial population in seawater of Bay of Bengal: Their adoptive characteristics and enzyme production. Journal of Biotechnology, 136: 527-540. doi: 10.1016/j.jbiotec.2008.07.1238
  • 24. Jeffrey, L.S.H. 2008. Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak. African Journal of Biotechnology, 7(20): 3697-3702. doi: 10.4314/ajb.v7i20.59415
  • 25. Jensen, P.R. & Lauro, F.M. 2008. An assessment of actinobacterial diversity in the marine environment. Antonie van Leeuwenhoek, 94(1): 51-62. doi: 10.1007/s10482-008-9239-x
  • 26. Jurado, M.M., Suárez-Estrella, F., López, M.J., López-González, J.A. & Moreno, J. 2019. Bioprospecting from plant waste composting: Actinobacteria against phytopathogens producing damping-off. Biotechnology Reports, 23:e00354. doi: 10.1016/j.btre.2019.e00354
  • 27. Kasana, R,C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A.A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology, 57(5): 503–507. doi:10.1007/s00284-008-9276-8
  • 28. Kalisz, H.M. 1988. Microbial proteinases. Advances in Biochemical Engineering/Biotechnology, 36: 1-65.
  • 29. Kämpfer, P., Glaeser, S.P., Parkes, L., van Keulen G., & Dyson, P. 2014. The Family Streptomycetaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E. & Thompson, F. (eds). The Prokaryotes; Actinobacteria, Springer, Berlin, Heidelberg, 889-1010 pp.
  • 30. Kokare, C.R., Mahadik, K.R., Kadam, S.S. & Chopade, B.A. 2004. Isolation, characterization and antimicrobial activity of marine halophilic Actinopolyspora species AH1 from the west coast of India. Current Science, 86(4): 593-597.
  • 31. Kobayashi, T., Hatada, Y., Higaki, N., Lusterio, D.D., Ozawa, T., Koike, K., Kawai, S. & Ito, S. 1999. Enzymatic properties and deduced amino acid sequence of a high alkaline pectatelyase from an alkaliphilic Bacillus isolate. Biochimica et Biophysica Acta, 1427: 145-154.
  • 32. Korn-Wendisch, F. & Kutzner, H.J. 1992. The family Streptomycetaceae, 921-995 pp. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W. & Schleifer, K.H. (eds). The prokaryotes, Springer, New York, 4126 pp.
  • 33. Kulkarni, N. & Gadre, R.V. 2002. Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. Journal of Industrial Microbiology & Biotechnology, 28(6): 344-348. doi: 10.1038/sj/jim/7000254
  • 34. Lekshmi, M., Jayadev, A. & Navami, S.S. 2014. Isolation and screening of actinomycetes from marine samples for enzyme production. International Journal of Scientific & Engineering Research, 5(12): 199-204.
  • 35. Lima-Junior, J.D., Viana-Niero, C., Oliveria, D.V.C., Machado, G.E., Rabello, M.C.S., Martins-Junior, J., Martins, L.F., Digiampietri, L.A., da Silva, A.M., Setubal, J. C., Russell, D.A., Jacobs-Sera, D., Pope, W.H., Hatfull, G.F. & Leão, S.C. 2016. Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U. BMC Microbiology, 16(1): 111. doi: 10.1186/s12866-016-0734-3
  • 36. Liu, D., Coloe, S., Baird, R. & Pederson, J. 2000. Rapid mini-preparation of fungal DNA for PCR. Journal of Clinical Microbiology, 38(1): 471.
  • 37. Mitra, P. & Chakrabartty, P.K. 2005. An extracellular protease with depilation activity from Streptomyces nogalator. Journal of Scientific & Industrial Research, 64: 978-983.
  • 38. Mohseni, M., Norouzi, H., Hamedi, J. & Roohi, A. 2013. Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea. International Journal of Molecular & Cellular Medicine, 2(2): 64-71.
  • 39. Mukhtar, S., Zaheer, A., Aiysha, D., Malik, K.A. & Mehnaz, S. 2017. Actinomycetes: A source of industrially important enzymes. Journal of Proteomics & Bioinformatics, 10(12): 316-319. doi: 10.4172/jpb.1000456
  • 40. Oren A. 2002. Halophilic Microorganisms and their Environments. Dordrecht: Kluwer Scientific Publishers, 575 pp.
  • 41. Oskay M. 2009. Antifungal and antibacterial compounds from Streptomyces strain. African Journal of Biotechnology, 8(13): 3007-3017.
  • 42. Özcan, K. 2017. Trabzon (Karadeniz) deniz sedimentlerinden elde edilen denizel aktinomisetlerin sekonder metabolit biyosentez genlerinin taranması. Türk Tarım–Gıda Bilim ve Teknoloji Dergisi, 5(5): 502-506.
  • 43. Özcan, K., Çetinel Aksoy, S., Kalkan, O., Uzel, A., Hames-Kocabas, E. E. & Bedir, E. 2013. Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey. Journal of Soils & Sediments, 13(8): 1493-1501. doi: 10.1007/s11368-013-0734-y
  • 44. Pandey, A. Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D. & Mohan, R. 2000. Advances in microbial amylases. Biotechnology & Applied Biochemistry, 31(2): 135-152. doi: 10.1042/ba19990073
  • 45. Passari, A.K., Mishra, V.K., Saikia, R., Gupta, V.K. & Singh, B.P. 2015. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Frontiers in Microbiology, 6: 273. doi: 10.3389/fmicb.2015.00273
  • 46. Piel, J. 2004. Metabolites from symbiotic bacteria. Natural Product Reports, 21(4): 519-538. doi: 10.1039/b310175b
  • 47. Praveen Kumar, G., & Suneetha, V. 2015. Pectinases from actinomycetes: A Thorough Study. International Journal of ChemTech Research, 8(7): 345-350.
  • 48. Ramesh, S. & Mathivanan, N. 2009. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology & Biotechnology, 25: 2103-2111.
  • 49. Recer, G.M., Browne, M.L., Horn, E.G., Hill, K.M. & Boehler, W.F. 2001. Ambient air levels of Aspergillus fumigatus and themorphilic actinomycetes in a residential neighbourhood near a yard-waste composting facility. Aerobiologia, 17: 99-108.
  • 50. Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K. & Swings, J. 2003. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology, 94(1): 127-137. doi: 10.1046/j.1365-2672.2003.01800.x
  • 51. Sahilah, A.M. 1991. Aktinomiset yang berkaitan dengan bahan buangan ternakan ayam. BSc Thesis, University Malaya, Malaysia.
  • 52. Selvam, K., Vishnupriy, B. & Subhash Chandra Bose, V. 2011. Screening and quantification of marine actinomycetes producing industrial enzymes amylase, cellulase and lipase from South Coast of India. International Journal of Pharmacy & Biological Sciences Archive, 2(5): 1481-1487.
  • 53. Stackebrandt, E. & Schumann, P. 2006. Introduction to the Taxonomy of Actinobacteria, 297-321 pp. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E. (eds). The Prokaryotes. Springer, New York. doi: 10.1007/0-387-30743-5_16
  • 54. Suthindhiran, K., Jayasri, M.A., Dipali, D. & Prasar, A. 2014. Screening and characterization of protease producing actinomycetes from marine saltern. Journal of Basic Microbiology, 54: 1098-1109. doi: 10.1002/jobm.201300563
  • 55. Tan, H., Deng, Z. & Cao, L. 2009. Isolation and characterization of actinomycetes from healthy goat faeces. Letters in Applied Microbiology, 49(2): 248-253. doi: 10.1111/j.1472-765X.2009.02649.x
  • 56. Türkmen, M. & Duran, K. 2021. The effect of brown seaweed and cattle manure combinations on the properties of Eisenia fetida’s organic fertilizer. Turkish Journal of Agriculture-Food Science & Technology, 9(6): 1070-1075. doi: 10.24925/turjaf.v9i6.1070-1075.4212
  • 57. Undabarrena, A., Ugalde, J.A., Seeger, M. & Cámara, B. 2017. Genomic data mining of the marine Actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ, 5:e2912. doi: 10.7717/peerj.2912
  • 58. Westerdahl, A., Olsson, C.J., Kjelleberg, S. & Conway, P.L. 1991. Isolation and characterization of turbot (Scophtalmus maximus) associated bacteria with inhibitory effects against Vibrio anguillarum. Applied & Environmental Microbiology, 57(8): 2223-2228. doi: 10.1128/aem.57.8.2223-2228.1991
  • 59. Williams, P.G. 2009. Panning for chemical gold: Marine bacteria as a source of new therapeutics. Trends in Biotechnology, 27(1): 45-52. doi: 10.1016/j.tibtech.2008.10.005
  • 60. Williams, S.T., Locci, R., Beswick, A., Kurtböke, D.I., Kuznetsov, V.D., Le Monnier, F.J., Long, P.F., Maycroft, K.A., Palma, R.A., Petrolini, B., Quaroni, S., Todd, J.I. & West, M. 1993. Detection and identification of novel actinomycetes. Research in Microbiology, 144(8): 653-656. doi: 10.1016/0923-2508(93)90069-E
  • 61. Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G.F., Chater, K.F. & van Sinderen, D. 2007. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiology & Molecular Biology Reviews, 71(3): 495-548. doi:10.1128/MMBR.00005-07
  • 62. Veyisoglu, A. & Sahin, N. 2014. Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. International Journal of Systematic & Evolutionary Microbiology, 64: 819-826. doi:10.1099/ijs.0.055640-0
  • 63. Veyisoglu, A. & Sahin, N. 2015. Streptomyces klenkii sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek, 107(1): 273-279. doi: 10.1007/s10482-014-0325-y
  • 64. Zeng, G., Yu, Z., Chen, Y., Zhang, J., Li, H., Yu, M. & Zhao, M. 2011. Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresource Technology, 102(10): 5905-5911.doi: 10.1016/j.biortech.2011.02.088.
Year 2022, , 113 - 124, 15.10.2022
https://doi.org/10.23902/trkjnat.1059974

Abstract

Bakteriyel sekonder metabolitler, tıbbi ve biyoteknolojik uygulamalarda önemli bir rol oynamaktadır. Aktinomisetler önemli bakteriyel antibiyotik ve enzim kaynaklarıdır. Bugün bilinen antimikrobiyallerin çoğu, aktinomisetlerden özellikle Streptomyces cinsinden izole edilmiştir. Bu çalışmada, Karadeniz kıyılarından toplanan Cystoseira barbata (Stackhouse) C. Agardh kompostundan seri seyreltme yöntemi ile aktinomiset izolasyonu yapılmıştır. Kompost örneklerinden toplam 73 aktinomiset izolatı (BSC) elde edilmiştir. İzolatların farklı hücre dışı enzimler üretme yetenekleri kalitatif olarak araştırıldı. İzolatların %68,5'inin amilaz, %100’ünün selülaz, %47,9’unun kitinaz, %94,5’inin pektinaz, %98,6’sının proteaz ve %96,3’ünün lipaz/esteraz aktivitesine sahip olduğu belirlendi. İzolatların antibakteriyel aktiviteleri öncelikle çapraz çizgi yöntemi kullanılarak araştırıldı. İzolatlar, Staphylococcus aureus Rosenbach ve Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper-Bäl’e karşı sırasıyla %98,6 ve %84,9 ile oldukça yüksek antibakteriyel aktivite göstermektedir. Yüksek antibakteriyel aktiviteli altı izolattan (BSC-13, BSC-17, BSC-37, BSC-38, BSC-45, BSC-49) üçü, çift tabakalı yöntemle antibakteriyel aktiviteleri açısından sekonder olarak taranmıştır. 7. günde, BSC-37 izolatı, S. aureus'a karşı yüksek bir inhibisyon (57 mm) gösterdi. Ayrıca bu altı izolat, morfolojik ve fizyolojik özelliklerine ve 16S rDNA dizi analizine göre tanımlandı. 16S rDNA dizi analizi yüksek antibakteriyel aktiviteye sahip izolatların Streptomyces cinsine ait olduğunu göstermiştir. Sonuçlar, bu izolatların büyük potansiyele sahip olduğunu ve biyoaktif doğal ürünler üzerine yapılan çalışmalar için iyi bir kaynak olarak hizmet edebileceğini göstermiştir.

Project Number

FEN-BAP-A-140316-52

References

  • 1. Adamu, A.A., Ibrahim, N., John, O. & Matilda, A.O. 2017. Production of novel antifungal compounds from actinomycetes isolated from waste dump soil in western Uganda. African Journal of Microbiology Research, 11(30): 1200-1210. doi: 10.5897/AJMR2017.8588
  • 2. Amore, A., Pepe, O., Ventorino, V., Birolo, L., Giangrande, C. & Faraco, V. 2012. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost. Microbial Cell Factories, 11(164): 1-12. doi: 10.1186/1475-2859-11-164
  • 3. Azzeddine, B., Abdelaziz, M., Estelle, C., Mouloud, K., Nawel, B., Nabila, B., Francis, D. & Said, B. 2013. Optimization and partial characterization of endoglucanase produced by Streptomyces sp. B-PNG23. Archives of Biological Sciences, 65(2): 549-558. doi: 10.2298/ABS1302549A
  • 4. Bernan, V.S., Greenstein, M. & Carter, G.T. 2004. Mining marine microorganisms as a source of new antimicrobials and antifungals. Current Medicinal Chemistry-Anti-Infective Agents, 3(3): 181-195. doi: 10.2174/1568012043353883
  • 5. Bi, B.Z., Dayanand, A. & Ambika, P. 2017. Development of paper biosensor for the detection of phenol from industrial effluents using bioconjugate of Tyr-AuNps mediated by novel isolate Streptomyces tuirus DBZ39. Journal of Nanomaterials, 2017: 1-8. doi: 10.1155/2017/1352134
  • 6. Bragger, J.M, Daniel, R.M. & Morgan, H.W. 1989. Very stable enzymes from extremely thermophilic archaebacteria and eubabacteria. Applied Microbiology & Biotechnology, 31: 556-561.
  • 7. Brosius, J., Palmer, M.L., Kennedy, P.J. & Noller, H.F. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 75(10): 4801-4805. doi: 10.1073/pnas.75.10.4801
  • 8. Cuesta, G., García-de-la-Fuente, R., Abad, M. & Fornes, F. 2012. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents. Journal of Environmental Management, 95: 280-284. doi: /10.1016/j.jenvman.2010.11.023
  • 9. Dharmaraj, S. 2010. Marine Streptomyces as a novel source of bioactive substance. World Journal of Microbiology & Biotechnology, 26(12): 2123-2139. doi: 10.1007/s11274-010-0415-6
  • 10. Dornelas, J.C.M., Figueiredo, J.E.F., de Abreu, C.S., Lana, U.G.P., Oliveira, C.A. & Mariel, I.E. 2017. Characterization and phylogenetic affiliation of Actinobacteria from tropical soils with potential uses for agro-industrial processes. Genetics & Molecular Research, 16(3): 1-16. doi: 10.4238/gmr16039703
  • 11. Gautham, S.A., Shobha, K.S., Onkarappa, R. & Prashith Kekuda, T.R. 2012. Isolation, characterisation and antimicrobial potential of Streptomyces species from Western Ghats of Karnataka, India. Research Journal of Pharmacy & Technology, 5(2): 233-238.
  • 12. Goodfellow, M. & Williams, S.T. 1983. Ecology of actinomycetes. Annual Review of Microbiology, 37(1): 189-216. doi: 10.1146/annurev.mi.37.100183.001201
  • 13. Goodfellow, M. & Fiedler, H.P. 2010. A guide to successful bioprospecting: informed by Actinobacterial systematics. Antonie van Leeuwenhoek, 98(2): 119-142. doi: 10.1007/s10482-010-9460-2
  • 14. Groth, I., Schumann, P., Rainey, F.A., Martin, K., Schuetze, B. & Augsten, K. 1997. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. International Journal of Systematic Bacteriology, 47(4): 1129-1133. doi: 10.1099/00207713-47-4–1129
  • 15. Gulve, R.M. & Deshmukh, A.M. 2012. Antimicrobial activity of the marine actinomycetes. International Multidisciplinary Research Journal, 2(3): 16-22.
  • 16. Haba, E., Bresco, O., Ferrer, C., Marques, A., Basguets, M. & Manresa, A. 2000. Isolation of lipase secreting bacteria by deploying used frying oil as selective substrate. Enzyme & Microbial Technology, 26: 40-44.
  • 17. Holt, J.G., Krieg, R.N., Sneath, P.H.A., Staley, J.T. & Williams, S.T. 2000. Bergey’s Manual of Determinative Bacteriology. 9th edn Lippincott Williams and Wilkins, Baltimore, Maryland, 787 pp.
  • 18. Imada, C., Masuda, S., Kobayashi, T., Hamada-Sato, N. & Nakashima, T. 2010. Isolation and characterization of marine and terrestrial actinomycetes using a medium supplemented with NaCl. Actinomycetologica, 24(1): 12-17. doi: 10.3209/saj.SAJ240104
  • 19. Jagannathan, S.V., Manemann, E.M., Rowe, S.E., Callender, M.C. & Soto, W. 2021. Marine actinomycetes, new sources of biotechnological products. Marine Drugs, 19(7): 365. doi: 10.3390/md19070365 20. Janaki, T. 2017. Enzymes from actinomycetes. International Journal of ChemTech Research, 10(3): 326-332.
  • 21. Jang, H.D. & Chen, K.S. 2003. Production and characterisation of thermostable cellulase from Streptomyces transformant T3-1. World Journal of Microbiology & Biotechnology, 19: 263-268.
  • 22. Jang, H.D. & Chang, K.S. 2005. Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-l fermenter. Biotechnology Letters, 27(4): 239-242. doi:10.1007/s10529-004-8356-5
  • 23. Jayaprakashvel, M., Ramesh, S., Sownthararajan, K. & Mathivanan, N. 2008. Marine bacterial population in seawater of Bay of Bengal: Their adoptive characteristics and enzyme production. Journal of Biotechnology, 136: 527-540. doi: 10.1016/j.jbiotec.2008.07.1238
  • 24. Jeffrey, L.S.H. 2008. Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak. African Journal of Biotechnology, 7(20): 3697-3702. doi: 10.4314/ajb.v7i20.59415
  • 25. Jensen, P.R. & Lauro, F.M. 2008. An assessment of actinobacterial diversity in the marine environment. Antonie van Leeuwenhoek, 94(1): 51-62. doi: 10.1007/s10482-008-9239-x
  • 26. Jurado, M.M., Suárez-Estrella, F., López, M.J., López-González, J.A. & Moreno, J. 2019. Bioprospecting from plant waste composting: Actinobacteria against phytopathogens producing damping-off. Biotechnology Reports, 23:e00354. doi: 10.1016/j.btre.2019.e00354
  • 27. Kasana, R,C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A.A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology, 57(5): 503–507. doi:10.1007/s00284-008-9276-8
  • 28. Kalisz, H.M. 1988. Microbial proteinases. Advances in Biochemical Engineering/Biotechnology, 36: 1-65.
  • 29. Kämpfer, P., Glaeser, S.P., Parkes, L., van Keulen G., & Dyson, P. 2014. The Family Streptomycetaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E. & Thompson, F. (eds). The Prokaryotes; Actinobacteria, Springer, Berlin, Heidelberg, 889-1010 pp.
  • 30. Kokare, C.R., Mahadik, K.R., Kadam, S.S. & Chopade, B.A. 2004. Isolation, characterization and antimicrobial activity of marine halophilic Actinopolyspora species AH1 from the west coast of India. Current Science, 86(4): 593-597.
  • 31. Kobayashi, T., Hatada, Y., Higaki, N., Lusterio, D.D., Ozawa, T., Koike, K., Kawai, S. & Ito, S. 1999. Enzymatic properties and deduced amino acid sequence of a high alkaline pectatelyase from an alkaliphilic Bacillus isolate. Biochimica et Biophysica Acta, 1427: 145-154.
  • 32. Korn-Wendisch, F. & Kutzner, H.J. 1992. The family Streptomycetaceae, 921-995 pp. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W. & Schleifer, K.H. (eds). The prokaryotes, Springer, New York, 4126 pp.
  • 33. Kulkarni, N. & Gadre, R.V. 2002. Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. Journal of Industrial Microbiology & Biotechnology, 28(6): 344-348. doi: 10.1038/sj/jim/7000254
  • 34. Lekshmi, M., Jayadev, A. & Navami, S.S. 2014. Isolation and screening of actinomycetes from marine samples for enzyme production. International Journal of Scientific & Engineering Research, 5(12): 199-204.
  • 35. Lima-Junior, J.D., Viana-Niero, C., Oliveria, D.V.C., Machado, G.E., Rabello, M.C.S., Martins-Junior, J., Martins, L.F., Digiampietri, L.A., da Silva, A.M., Setubal, J. C., Russell, D.A., Jacobs-Sera, D., Pope, W.H., Hatfull, G.F. & Leão, S.C. 2016. Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U. BMC Microbiology, 16(1): 111. doi: 10.1186/s12866-016-0734-3
  • 36. Liu, D., Coloe, S., Baird, R. & Pederson, J. 2000. Rapid mini-preparation of fungal DNA for PCR. Journal of Clinical Microbiology, 38(1): 471.
  • 37. Mitra, P. & Chakrabartty, P.K. 2005. An extracellular protease with depilation activity from Streptomyces nogalator. Journal of Scientific & Industrial Research, 64: 978-983.
  • 38. Mohseni, M., Norouzi, H., Hamedi, J. & Roohi, A. 2013. Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea. International Journal of Molecular & Cellular Medicine, 2(2): 64-71.
  • 39. Mukhtar, S., Zaheer, A., Aiysha, D., Malik, K.A. & Mehnaz, S. 2017. Actinomycetes: A source of industrially important enzymes. Journal of Proteomics & Bioinformatics, 10(12): 316-319. doi: 10.4172/jpb.1000456
  • 40. Oren A. 2002. Halophilic Microorganisms and their Environments. Dordrecht: Kluwer Scientific Publishers, 575 pp.
  • 41. Oskay M. 2009. Antifungal and antibacterial compounds from Streptomyces strain. African Journal of Biotechnology, 8(13): 3007-3017.
  • 42. Özcan, K. 2017. Trabzon (Karadeniz) deniz sedimentlerinden elde edilen denizel aktinomisetlerin sekonder metabolit biyosentez genlerinin taranması. Türk Tarım–Gıda Bilim ve Teknoloji Dergisi, 5(5): 502-506.
  • 43. Özcan, K., Çetinel Aksoy, S., Kalkan, O., Uzel, A., Hames-Kocabas, E. E. & Bedir, E. 2013. Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey. Journal of Soils & Sediments, 13(8): 1493-1501. doi: 10.1007/s11368-013-0734-y
  • 44. Pandey, A. Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D. & Mohan, R. 2000. Advances in microbial amylases. Biotechnology & Applied Biochemistry, 31(2): 135-152. doi: 10.1042/ba19990073
  • 45. Passari, A.K., Mishra, V.K., Saikia, R., Gupta, V.K. & Singh, B.P. 2015. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Frontiers in Microbiology, 6: 273. doi: 10.3389/fmicb.2015.00273
  • 46. Piel, J. 2004. Metabolites from symbiotic bacteria. Natural Product Reports, 21(4): 519-538. doi: 10.1039/b310175b
  • 47. Praveen Kumar, G., & Suneetha, V. 2015. Pectinases from actinomycetes: A Thorough Study. International Journal of ChemTech Research, 8(7): 345-350.
  • 48. Ramesh, S. & Mathivanan, N. 2009. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology & Biotechnology, 25: 2103-2111.
  • 49. Recer, G.M., Browne, M.L., Horn, E.G., Hill, K.M. & Boehler, W.F. 2001. Ambient air levels of Aspergillus fumigatus and themorphilic actinomycetes in a residential neighbourhood near a yard-waste composting facility. Aerobiologia, 17: 99-108.
  • 50. Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K. & Swings, J. 2003. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology, 94(1): 127-137. doi: 10.1046/j.1365-2672.2003.01800.x
  • 51. Sahilah, A.M. 1991. Aktinomiset yang berkaitan dengan bahan buangan ternakan ayam. BSc Thesis, University Malaya, Malaysia.
  • 52. Selvam, K., Vishnupriy, B. & Subhash Chandra Bose, V. 2011. Screening and quantification of marine actinomycetes producing industrial enzymes amylase, cellulase and lipase from South Coast of India. International Journal of Pharmacy & Biological Sciences Archive, 2(5): 1481-1487.
  • 53. Stackebrandt, E. & Schumann, P. 2006. Introduction to the Taxonomy of Actinobacteria, 297-321 pp. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E. (eds). The Prokaryotes. Springer, New York. doi: 10.1007/0-387-30743-5_16
  • 54. Suthindhiran, K., Jayasri, M.A., Dipali, D. & Prasar, A. 2014. Screening and characterization of protease producing actinomycetes from marine saltern. Journal of Basic Microbiology, 54: 1098-1109. doi: 10.1002/jobm.201300563
  • 55. Tan, H., Deng, Z. & Cao, L. 2009. Isolation and characterization of actinomycetes from healthy goat faeces. Letters in Applied Microbiology, 49(2): 248-253. doi: 10.1111/j.1472-765X.2009.02649.x
  • 56. Türkmen, M. & Duran, K. 2021. The effect of brown seaweed and cattle manure combinations on the properties of Eisenia fetida’s organic fertilizer. Turkish Journal of Agriculture-Food Science & Technology, 9(6): 1070-1075. doi: 10.24925/turjaf.v9i6.1070-1075.4212
  • 57. Undabarrena, A., Ugalde, J.A., Seeger, M. & Cámara, B. 2017. Genomic data mining of the marine Actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ, 5:e2912. doi: 10.7717/peerj.2912
  • 58. Westerdahl, A., Olsson, C.J., Kjelleberg, S. & Conway, P.L. 1991. Isolation and characterization of turbot (Scophtalmus maximus) associated bacteria with inhibitory effects against Vibrio anguillarum. Applied & Environmental Microbiology, 57(8): 2223-2228. doi: 10.1128/aem.57.8.2223-2228.1991
  • 59. Williams, P.G. 2009. Panning for chemical gold: Marine bacteria as a source of new therapeutics. Trends in Biotechnology, 27(1): 45-52. doi: 10.1016/j.tibtech.2008.10.005
  • 60. Williams, S.T., Locci, R., Beswick, A., Kurtböke, D.I., Kuznetsov, V.D., Le Monnier, F.J., Long, P.F., Maycroft, K.A., Palma, R.A., Petrolini, B., Quaroni, S., Todd, J.I. & West, M. 1993. Detection and identification of novel actinomycetes. Research in Microbiology, 144(8): 653-656. doi: 10.1016/0923-2508(93)90069-E
  • 61. Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G.F., Chater, K.F. & van Sinderen, D. 2007. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiology & Molecular Biology Reviews, 71(3): 495-548. doi:10.1128/MMBR.00005-07
  • 62. Veyisoglu, A. & Sahin, N. 2014. Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. International Journal of Systematic & Evolutionary Microbiology, 64: 819-826. doi:10.1099/ijs.0.055640-0
  • 63. Veyisoglu, A. & Sahin, N. 2015. Streptomyces klenkii sp. nov., isolated from deep marine sediment. Antonie van Leeuwenhoek, 107(1): 273-279. doi: 10.1007/s10482-014-0325-y
  • 64. Zeng, G., Yu, Z., Chen, Y., Zhang, J., Li, H., Yu, M. & Zhao, M. 2011. Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresource Technology, 102(10): 5905-5911.doi: 10.1016/j.biortech.2011.02.088.
There are 63 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article/Araştırma Makalesi
Authors

Zeynep Şule Topatan 0000-0003-2066-1546

Hatice Katı 0000-0002-2053-3168

Project Number FEN-BAP-A-140316-52
Publication Date October 15, 2022
Submission Date January 19, 2022
Acceptance Date April 26, 2022
Published in Issue Year 2022

Cite

APA Topatan, Z. Ş., & Katı, H. (2022). SCREENING OF ACTINOMYCETES FROM Cystoseira barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES. Trakya University Journal of Natural Sciences, 23(2), 113-124. https://doi.org/10.23902/trkjnat.1059974
AMA Topatan ZŞ, Katı H. SCREENING OF ACTINOMYCETES FROM Cystoseira barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES. Trakya Univ J Nat Sci. October 2022;23(2):113-124. doi:10.23902/trkjnat.1059974
Chicago Topatan, Zeynep Şule, and Hatice Katı. “SCREENING OF ACTINOMYCETES FROM Cystoseira Barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES”. Trakya University Journal of Natural Sciences 23, no. 2 (October 2022): 113-24. https://doi.org/10.23902/trkjnat.1059974.
EndNote Topatan ZŞ, Katı H (October 1, 2022) SCREENING OF ACTINOMYCETES FROM Cystoseira barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES. Trakya University Journal of Natural Sciences 23 2 113–124.
IEEE Z. Ş. Topatan and H. Katı, “SCREENING OF ACTINOMYCETES FROM Cystoseira barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES”, Trakya Univ J Nat Sci, vol. 23, no. 2, pp. 113–124, 2022, doi: 10.23902/trkjnat.1059974.
ISNAD Topatan, Zeynep Şule - Katı, Hatice. “SCREENING OF ACTINOMYCETES FROM Cystoseira Barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES”. Trakya University Journal of Natural Sciences 23/2 (October 2022), 113-124. https://doi.org/10.23902/trkjnat.1059974.
JAMA Topatan ZŞ, Katı H. SCREENING OF ACTINOMYCETES FROM Cystoseira barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES. Trakya Univ J Nat Sci. 2022;23:113–124.
MLA Topatan, Zeynep Şule and Hatice Katı. “SCREENING OF ACTINOMYCETES FROM Cystoseira Barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES”. Trakya University Journal of Natural Sciences, vol. 23, no. 2, 2022, pp. 113-24, doi:10.23902/trkjnat.1059974.
Vancouver Topatan ZŞ, Katı H. SCREENING OF ACTINOMYCETES FROM Cystoseira barbata (Stackhouse) C. Agardh COMPOST FOR THEIR ENZYME AND ANTIBACTERIAL ACTIVITIES. Trakya Univ J Nat Sci. 2022;23(2):113-24.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.