SYNTHESIS, CHARACTERIZATION AND BIOCOMPATIBILITY OF PLANT-OIL BASED HYDROGELS
Year 2021,
, 147 - 154, 15.10.2021
Özlem Yalçın Çapan
,
Pinar Cakir Hatir
Abstract
Biocompatible hydrogels are used in a variety of biomedical applications, including tissue scaffolds, drug delivery systems, lab/organ-on-a-chips, biosensors, cell-culture studies and contact lenses. The demand for novel and functional monomers to be used in hydrogel synthesis is increasing as the number of biomedical applications and need for biomaterials increase. The purpose of the study was to develop novel hydrogels from renewable materials. Acrylated methyl ricinoleate, a plant oil-based monomer, was used as the renewable material. The effects of acrylated methyl ricinoleate/N-isopropyl acrylamide molar ratio on hydrogel structural properties, thermal stability and in vitro cytotoxicity were studied. FTIR spectroscopy was used to characterize the structural properties of the hydrogels, while TGA was used to characterize the thermal properties. HEK293 and Cos-7 cell lines were used to test the cytotoxicity of the monomers and hydrogels. IC50 values for acrylated methyl ricinoleate and N-isopropyl acrylamide were found to be greater than 25 mg/mL. Cell viability of hydrogels containing 50% or more acrylated methyl ricinoleate was greater than 60%, while hydrogel biocompatibility decreased with decreasing molar ratio of acrylated methyl ricinoleate. Cells showed a minimum viability of 80% when incubated in hydrogel degradation products. An environmentally friendly synthesis method was developed and novel biocompatible hydrogels from renewable materials were produced for biomedical applications.
Thanks
The authors are grateful to Dr. Gokhan Cayli (İstanbul, Turkey), Elif Isikci Koca (İstanbul, Turkey), Seyma Turker (İstanbul, Turkey) and Necla Yucel (İstanbul, Turkey) for their support in hydrogel synthesis and characterization studies.
References
- 1. Bhattacharya, M., Malinen, M.M., Lauren, P., Lou, Y.R., Kuisma, S.W., Kanninen, L., Lille, M., Corlu, A., GuGuen-Guillouzo, C., Ikkala, O., Laukkanen, A., Urtti, A. & Yliperttula, M. 2012. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. Journal of controlled release, 164(3): 291-298.
- 2. Cakir Hatir, P. & Cayli, G. 2019. Environmentally friendly synthesis and photopolymerization of acrylated methyl ricinoleate for biomedical applications. Journal of Applied Polymer Science, 136(38): 47969-47976.
- 3. Capella, V., Rivero, R.E., Liaudat, A.C., Ibarra, L.E., Roma, D.A., Alustiza, F., Mañas, F., Barbero, C.A., Bosch, P., Rivarola, C.R. & Rodriguez, N. 2019. Cytotoxicity and bioadhesive properties of poly-N-isopropylacrylamide hydrogel. Heliyon, 5(4): e01474.
- 4. Ding, C., Chen, X., Kang, Q. & Yan, X. 2020. Biomedical Application of Functional Materials in Organ-on-a-Chip. Frontiers in Bioengineering and Biotechnology, 8: 823-831.
- 5. Dong, L.C. & Hoffman, A.S. 1986. Thermally reversible hydrogels: III. Immobilization of enzymes for feedback reaction control. Journal of Controlled Release, 4(3): 223-227.
- 6. Dupé, A., Achard, M., Fischmeister, C. & Bruneau, C. 2012. Methyl ricinoleate as platform chemical for simultaneous production of fine chemicals and polymer precursors. ChemSusChem, 5(11): 2249-2254.
- 7. Geckil, H., Xu, F., Zhang, X., Moon, S. & Demirci, U. 2010. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (London, England), 5(3): 469-484.
- 8. Guo, B., Chen, Y., Lei, Y., Zhang, L., Zhou, W.Y., Rabie, A.B.M. & Zhao, J. 2011. Biobased poly (propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromolecules, 12(4): 1312-1321.
- 9. Ilić-Stojanović, S.S., Nikolić, L.B., Nikolić, V.D., Milić, J.R., Stamenković, J., Nikolić, G.M. & Petrović, S.D. 2013. Synthesis and characterization of thermosensitive hydrogels and the investigation of modified release of ibuprofen. Hemijska industrija, 67(6): 901-912.
- 10. Isikci Koca, E., Bozdag, G., Cayli, G., Kazan, D. & Cakir Hatir, P. 2020. Thermoresponsive hydrogels based on renewable resources. Journal of Applied Polymer Science, 137(28): 48861-48870.
- 11. Ko, H.F., Sfeir, C. & Kumta, P.N. 2010. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 368(1917): 1981-1997.
- 12. Koetting, M.C., Peters, J.T., Steichen, S.D. & Peppas, N.A. 2015. Stimulus-responsive hydrogels: theory, modern advances and applications. Materials Science and Engineering: R: Reports, 93: 1-49.
- 13. Lee, D.S. & He, C. 2010. In-situ gelling stimuli-sensitive PEG-based amphiphilic copolymer hydrogels. pp. 123-146. In: Ottenbrite, R.M., Park, K. & Okano, T. (eds). Biomedical Applications of Hydrogels Handbook. Springer, New York, NY, 432 pp.
- 14. Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H.M. & Tran, S.D. 2019. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials (Basel, Switzerland), 12(20): 3323-3356.
- 15. Miao, S., Wang, P., Su, Z. & Zhang, S. 2014. Vegetable-oil-based polymers as future polymeric biomaterials. Acta biomaterialia, 10(4): 1692-1704.
- 16. Mohammadinejad, R., Maleki, H., Larrañeta, E., Fajardo, A.R., Nik, A.B., Shavandi, A., Sheikhi, A., Ghorbanpour, M., Farokhi, M., Govindh, P., Cabane, E., Azizi, S., Aref, A.R., Mozafari, M., Mehrali, M., Thomas, S., Mano, J.F., Mishra, Y.K. & Thakur, V.K. 2019. Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16: 213-246.
- 17. Peers, S., Montembault, A. & Ladavière, C. 2020. Chitosan hydrogels for sustained drug delivery. Journal of Controlled Release, 326: 150-163.
- 18. Peppas, N.A. & Hoffman, A.S. 2020. Hydrogels. pp. 153-166. In Wagner W.R., Zhang, G, Sakiyama-Elbert, S.E., Yaszemski, M.J., (eds). Biomaterials science, Academic Press. 1616 pp.
- 19. Peppas, N.A., Huang, Y., Torres-Lugo, M., Ward, J.H. & Zhang, J. 2000. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual review of biomedical engineering, 2(1): 9-29.
- 20. Ribeiro, C.A., Martins, M.V.S., Bressiani, A.H., Bressiani, J.C., Leyva, M.E. & de Queiroz, A.A.A. 2017. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering. Materials Science and Engineering: C, 81: 156-166.
- 21. Ruiz-Rubio, L., Álvarez, V., Lizundia, E., Vilas, J.L., Rodríguez, M. & León, L.M. 2015. Influence of α-methyl substitutions on interpolymer complexes formation between poly (meth) acrylic acids and poly (N-isopropyl (meth) acrylamide) s. Colloid and Polymer Science, 293(5): 1447-1455.
- 22. Shah, L.A., Farooqi, Z.H., Naeem, H., Shah, S.M. & Siddiq, M. 2013. Synthesis and characterization of poly (N-isopropylacrylamide) hybrid microgels with different cross-linker contents. Journal of the Chemical Society of Pakistan, 35: 1522-1529.
- 23. Xu, C., Dai, G. & Hong, Y. 2019. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta biomaterialia, 95: 50-59.
Year 2021,
, 147 - 154, 15.10.2021
Özlem Yalçın Çapan
,
Pinar Cakir Hatir
Abstract
Biyouyumlu hidrojeller, doku iskeleleri, ilaç taşıyıcı sitemler ve biyosensörler dahil olmak üzere çeşitli biyomedikal uygulamalarda kullanılmaktadırlar. Biyomedikal uygulamaların sayısı ve biyomalzemelere olan ihtiyaç arttıkça hidrojel sentezinde kullanılacak yeni ve işlevsel monomerlere olan talep artmaktadır. Çalışmanın amacı, yenilenebilir malzemelerden özgün hidrojeller geliştirmektir. Yenilenebilir malzeme olarak bitkisel yağ bazlı bir monomer olan akrillenmiş metil risinoleat kullanılmıştır. Akrillenmiş metil risinoleat / N-izopropil akrilamid mol oranının hidrojellerin yapısal özellikleri, termal dayanıklılıkları ve in vitro sitotoksisiteleri üzerindeki etkileri incelenmiştir. Hidrojellerin yapısal özelliklerini karakterize etmek için FTIR spektroskopisi kullanılırken, termal özellikleri karakterize etmek için TGA kullanılmıştır. HEK293 ve Cos-7 hücre hatları, monomerlerin ve hidrojellerin sitotoksisitesini test etmek için kullanılmıştır. Akrillenmiş metil risinoleat ve N-izopropil akrilamid için IC50 değerlerinin 25 mg/mL'den büyük olduğu bulunmuştur. %50 veya daha fazla akrillenmiş metil risinoleat içeren hidrojellerin hücre canlılığı %60'ın üzerinde iken, hidrojellerin biyouyumluluğu, akrillenmiş metil risinoleatın hidrojel içerisindeki mol oranı azaldıkça azalmaktadır. Hücreler, hidrojellerin bozunma ürünlerinde inkübe edildiklerinde minimum %80 canlılık göstermiştir. Sonuç olarak, çevre dostu bir sentez yöntemi geliştirilmiş olup, biyomedikal uygulamalarda kullanılmak üzere yenilenebilir malzemelerden özgün biyouyumlu hidrojeller üretilmiştir.
References
- 1. Bhattacharya, M., Malinen, M.M., Lauren, P., Lou, Y.R., Kuisma, S.W., Kanninen, L., Lille, M., Corlu, A., GuGuen-Guillouzo, C., Ikkala, O., Laukkanen, A., Urtti, A. & Yliperttula, M. 2012. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. Journal of controlled release, 164(3): 291-298.
- 2. Cakir Hatir, P. & Cayli, G. 2019. Environmentally friendly synthesis and photopolymerization of acrylated methyl ricinoleate for biomedical applications. Journal of Applied Polymer Science, 136(38): 47969-47976.
- 3. Capella, V., Rivero, R.E., Liaudat, A.C., Ibarra, L.E., Roma, D.A., Alustiza, F., Mañas, F., Barbero, C.A., Bosch, P., Rivarola, C.R. & Rodriguez, N. 2019. Cytotoxicity and bioadhesive properties of poly-N-isopropylacrylamide hydrogel. Heliyon, 5(4): e01474.
- 4. Ding, C., Chen, X., Kang, Q. & Yan, X. 2020. Biomedical Application of Functional Materials in Organ-on-a-Chip. Frontiers in Bioengineering and Biotechnology, 8: 823-831.
- 5. Dong, L.C. & Hoffman, A.S. 1986. Thermally reversible hydrogels: III. Immobilization of enzymes for feedback reaction control. Journal of Controlled Release, 4(3): 223-227.
- 6. Dupé, A., Achard, M., Fischmeister, C. & Bruneau, C. 2012. Methyl ricinoleate as platform chemical for simultaneous production of fine chemicals and polymer precursors. ChemSusChem, 5(11): 2249-2254.
- 7. Geckil, H., Xu, F., Zhang, X., Moon, S. & Demirci, U. 2010. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (London, England), 5(3): 469-484.
- 8. Guo, B., Chen, Y., Lei, Y., Zhang, L., Zhou, W.Y., Rabie, A.B.M. & Zhao, J. 2011. Biobased poly (propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromolecules, 12(4): 1312-1321.
- 9. Ilić-Stojanović, S.S., Nikolić, L.B., Nikolić, V.D., Milić, J.R., Stamenković, J., Nikolić, G.M. & Petrović, S.D. 2013. Synthesis and characterization of thermosensitive hydrogels and the investigation of modified release of ibuprofen. Hemijska industrija, 67(6): 901-912.
- 10. Isikci Koca, E., Bozdag, G., Cayli, G., Kazan, D. & Cakir Hatir, P. 2020. Thermoresponsive hydrogels based on renewable resources. Journal of Applied Polymer Science, 137(28): 48861-48870.
- 11. Ko, H.F., Sfeir, C. & Kumta, P.N. 2010. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 368(1917): 1981-1997.
- 12. Koetting, M.C., Peters, J.T., Steichen, S.D. & Peppas, N.A. 2015. Stimulus-responsive hydrogels: theory, modern advances and applications. Materials Science and Engineering: R: Reports, 93: 1-49.
- 13. Lee, D.S. & He, C. 2010. In-situ gelling stimuli-sensitive PEG-based amphiphilic copolymer hydrogels. pp. 123-146. In: Ottenbrite, R.M., Park, K. & Okano, T. (eds). Biomedical Applications of Hydrogels Handbook. Springer, New York, NY, 432 pp.
- 14. Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H.M. & Tran, S.D. 2019. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials (Basel, Switzerland), 12(20): 3323-3356.
- 15. Miao, S., Wang, P., Su, Z. & Zhang, S. 2014. Vegetable-oil-based polymers as future polymeric biomaterials. Acta biomaterialia, 10(4): 1692-1704.
- 16. Mohammadinejad, R., Maleki, H., Larrañeta, E., Fajardo, A.R., Nik, A.B., Shavandi, A., Sheikhi, A., Ghorbanpour, M., Farokhi, M., Govindh, P., Cabane, E., Azizi, S., Aref, A.R., Mozafari, M., Mehrali, M., Thomas, S., Mano, J.F., Mishra, Y.K. & Thakur, V.K. 2019. Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16: 213-246.
- 17. Peers, S., Montembault, A. & Ladavière, C. 2020. Chitosan hydrogels for sustained drug delivery. Journal of Controlled Release, 326: 150-163.
- 18. Peppas, N.A. & Hoffman, A.S. 2020. Hydrogels. pp. 153-166. In Wagner W.R., Zhang, G, Sakiyama-Elbert, S.E., Yaszemski, M.J., (eds). Biomaterials science, Academic Press. 1616 pp.
- 19. Peppas, N.A., Huang, Y., Torres-Lugo, M., Ward, J.H. & Zhang, J. 2000. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual review of biomedical engineering, 2(1): 9-29.
- 20. Ribeiro, C.A., Martins, M.V.S., Bressiani, A.H., Bressiani, J.C., Leyva, M.E. & de Queiroz, A.A.A. 2017. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering. Materials Science and Engineering: C, 81: 156-166.
- 21. Ruiz-Rubio, L., Álvarez, V., Lizundia, E., Vilas, J.L., Rodríguez, M. & León, L.M. 2015. Influence of α-methyl substitutions on interpolymer complexes formation between poly (meth) acrylic acids and poly (N-isopropyl (meth) acrylamide) s. Colloid and Polymer Science, 293(5): 1447-1455.
- 22. Shah, L.A., Farooqi, Z.H., Naeem, H., Shah, S.M. & Siddiq, M. 2013. Synthesis and characterization of poly (N-isopropylacrylamide) hybrid microgels with different cross-linker contents. Journal of the Chemical Society of Pakistan, 35: 1522-1529.
- 23. Xu, C., Dai, G. & Hong, Y. 2019. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta biomaterialia, 95: 50-59.