Research Article
BibTex RIS Cite
Year 2021, , 263 - 274, 15.10.2021
https://doi.org/10.23902/trkjnat.947001

Abstract

Bu çalışmada, erken gelişim döneminde şeker pancarının tuza toleransı için faydalı bir seçim kriteri belirlemek amaçlanmıştır. NaCl stresine (Kontrol, 5, 10 ve 15 dS m-1) maruz bırakılan dört şeker pancarı çeşidinde (Orthega, Valentina, FD Shoot ve Mohican) morfolojik ve fizyolojik özellikler incelenmiştir. Çimlenme testinde; çimlenme yüzdesi, ortalama çimlenme süresi, fide uzunluğu ve fide yaş ağırlığı, çıkış testinde; çıkış yüzdesi, ortalama çıkış süresi, kök uzunluğu, sürgün uzunluğu, bitki yaş ağırlığı, bağıl su içeriği, bağıl klorofil içeriği ve elektrolit sızıntısı ölçülmüştür. Sonuçlar, FD Shoot çeşidinde en yüksek çimlenmenin kontrol, en düşük çimlenmenin ise 15 dS m-1 seviyesinde kaydedildiğini göstermiştir. Çıkış testindeki tüm NaCl seviyelerinde en yüksek çıkış yüzdesi Orthega ve Mohican çeşitlerinde tespit edilmiştir. Artan NaCl seviyeleri ile şeker pancarı çeşitlerinde ortalama çıkış süresi gecikmiş ve sürgün uzunluğu, kök uzunluğu ve bağıl su içeriği azalmıştır. Bağıl klorofil içeriği ve elektrolit sızıntısı, kontrol ve 10 dS m-1 seviyelerinde sırasıyla 32,7 SPAD ve %21,6; 38,5 SPAD ve %35,6 olarak belirlenmiştir. Genel olarak, şeker pancarı çeşitleri arasında önemli farklılıklar bulunmuş ve incelenen özellikler açısından çeşitler 5 dS m-1'e kadar olan tuzluluğa tolerans göstermişlerdir. Bağıl klorofil içeriği ve elektrolit sızıntısının, tuzluluğa toleranslı veya hassas şeker pancarı çeşitlerinin seçiminde umut verici bir ipucu olarak kullanılması gerektiği sonucuna varılmıştır. 

References

  • 1. Abo-Kassem, E.ED.M. 2007. Effects of Salinity: Calcium interaction on growth and nucleic acid metabolism in five spices of Chenopodiaceae. Turkish Journal of Botany, 31: 125-134.
  • 2. Almansouri, M., Kinet, J.M. & Lutts, S. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 231: 243-254.
  • 3. Amirjani, M.R. 2010. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 5(6): 350-360.
  • 4. Anonymous, 2003. International Rules for Seed Testing. The International Seed Testing Association (ISTA), Edition 2003/1, Bassersdorf, CH-Switzerland.
  • 5. Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5): 361-376.
  • 6. Dadkhah, A. 2011. Effect of salinity on growth and leaf photosynthesis of two sugar beet (Beta vulgaris L.) cultivars. Journal of Agricultural Science and Technology, 13(7): 1001-1012.
  • 7. Dkhil, B.B. & Denden, M. 2012. Effect of salt stress on growth, anthocyanins, membrane permeability and chlorophyll fluorescence of okra (Abelmoschus esculentus L.) seedlings. American Journal of Plant Physiology, 7(4): 174-183.
  • 8. Farooq, S. & Azam, F. 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of Plant Physiology, 163: 629-637.
  • 9. Ghoulam, C. & Fares, K. 2001. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed Science and Technology, 29: 357-364.
  • 10. Ghoulam, C., Foursy, A. & Fares, K. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1): 39-50.
  • 11. Hampson C.R. & Simpson, G.M. 1990. Effects of temperature, salt and osmotic pressure on early growth of wheat (Triticum aestivum L.). 1. Germination. Canadian Journal of Botany, 68: 524-528.
  • 12. Higazy, M.A., Shehata, M.M. & Allam, A.I. 1995. Free proline relation to salinity tolerance of three sugar beet varieties. Egyptian Journal of Agricultural Research, 13(1): 175-190.
  • 13. Jafarzadeh, A. & Aliasgharzad, N. 2007. Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia, 62(5): 562-564.
  • 14. Jamali, S.S., Borzouei, A., Aghamirzaei, M., Khosronejad, H.R. & Fathi, M. 2015. Cell membrane stability and biochemical response of seven wheat cultivars under salinity stress. Brazilian Journal of Botany, 38(1): 63-69.
  • 15. Jamil, M. & Rha, E.S. 2004. The effect of salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea L.). Plant Resources, 7(3): 226-232.
  • 16. Jamil, M., Ashraf, M., Rehman, S., Ahmad, M. & Rha, E.S. 2012. Salinity induced changes in cell membrane stability, protein and RNA contents. African Journal of Biotechnology, 11(24): 6476-6483.
  • 17. Kandil, A.A., Sharief, A.E., Abido, W.A.E. & Awed, A.M. 2014. Effect of gibberellic acid on germination behaviour of sugar beet cultivars under salt stress conditions of Egypt. Sugar Tech, 16(2): 211-221.
  • 18. Katerji, N., Van Hoorn, J.W., Hamdy, A. & Mastrorilli, M. 2000. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management, 43(1): 99-109.
  • 19. Kaya, M.D., Ipek, A. & Ozturk, A. 2003. Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turkish Journal of Agriculture and Forestry, 27(4): 221-227.
  • 20. Khayamim, S., Tavkol Afshari, R., Sadeghian, S.Y., Poustini, K., Roozbeh, F. & Abbasi, Z. 2014. Seed germination, plant establishment, and yield of sugar beet genotypes under salinity stress. Journal of Agricultural Science and Technology, 16(4): 779-790.
  • 21. Khorshid, A.M., Moghadam, F.A., Bernousi, I., Khayamim, S. & Rajabi, A. 2018. Comparison of some physiological responses to salinity and normal conditions in Sugar Beet. Indian Journal of Agricultural Research, 52(4): 362-367.
  • 22. Mahmoud, E.A. & Hill, M.J. 1981. Salt tolerance of sugar beet at various temperatures. New Zealand Journal of Agricultural Research, 24(1): 67-71.
  • 23. Mekki, B.B. & EL-Gazzar, M.M. 1999. Response of root yield and quality of sugar beet (Beta vulgaris L.) to irrigation with saline water and follar potassium fertilization. Annals of Agricultural Sciences, 44(1): 213-225.
  • 24. Mensah, J.K., Akomeah, P.A., Ikhajiagbe, B. & Ekpekurede, E.O. 2006. Effects of salinity on germination, growth and yield of five groundnut genotypes. African Journal of Biotechnology, 5(20): 1973-1979.
  • 25. Mostafavi, K. 2012. Effect of salt stress on germination and early seedling growth stage of sugar beet cultivars. American-Eurasian Journal of Sustainable Agriculture, 6: 120-125.
  • 26. Neumann, P.M. 1995. Inhabitation of content of germinating content root growth by salinity stress: Toxicity or an adaptive biophysical response. Pp. 299-304. In: Baluska, F., Ciamporova, M., Gasparikova, O. & Barlow, P.W. (eds). Structure and Function of Roots. The Netherlands: Kluwer Academic Publishers, 354 pp.
  • 27. Pinheiro, C., Ribeiro, I.C., Reisinger, V., Planchon, S., Veloso, M.M., Renaut, J., Eichacker, L. & Ricardo, C.P. 2018. Salinity effect on germination, seedling growth and cotyledon membrane complexes of a Portuguese salt marsh wild beet ecotype. Theoretical and Experimental Plant Physiology, 30(2): 113-127.
  • 28. Romano, A., Stevanato, P., Sorgona, A., Cacco, G. & Abenavoli, M.R. 2019. Dynamic response of key germination traits to NaCl stress in sugar beet seeds. Sugar Tech, 21(4): 661-671.
  • 29. Salimi, Z. & Boelt, B. 2019. Optimization of germination inhibitors eliminating from sugar beet (Beta vulgaris L.) seeds of different maturity classes. Agronomy, 9(11): 763.
  • 30. Shannon, M.C., Grieve, C.M., Lesch, S.M. & Draper, J.H. 2000. Analysis of salt tolerance in nine leafy vegetables irrigated with saline drainage water. Journal of the American Society for Horticultural Science, 125(5): 658-664.
  • 31. Skorupa, M., Gołębiewski, M., Kurnik, K., Niedojadło, J., Kęsy, J., Klamkowski, K., Wójcik, K., Treder, W., Tretyn, A. & Tyburski, J. 2019. Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor. BMC Plant Biology, 19(1): 1-18.
  • 32. Taghizadegan, M., Toorchi, M., Vahed, M.M. & Khayamim, S. 2019. Evaluation of sugar beet breeding populations based morpho-physiological characters under salinity stress. Pakistan Journal of Botany, 51(1): 11-17.
  • 33. Tahjib-UI-Arif, M., Sohag, A.A.M., Afrin, S., Bashar, K.K., Afrin, T., Mahamud, A.G.M., Polash, M.A.S., Hossain, M.T., Sohel, M.A.T., Brestic, M. & Murata, Y. 2019. Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture, 9(10): 223.
  • 34. Wang, Y., Stevanato, P., Yu, L., Zhao, H., Sun, X., Sun, F., Li, J. & Geng, G. 2017. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Journal of Plant Research, 130(6): 1079-1093.
  • 35. Wang, Y., Stevanato, P., Lv, C., Li, R. & Geng, G. 2019. Comparative physiological and proteomic analysis of two sugar beet genotypes with contrasting salt tolerance. Journal of Agricultural and Food Chemistry, 67(21): 6056-6073.
  • 36. Willenborg, C.J., Gulden, R.H., Johnson, E.N. & Shirtliffe, S.J. 2004. Germination characteristics of polymer-coated canola (Brassica napus L.) seeds subjected to moisture stress at different temperatures. Agronomy Journal, 96: 786-791.
  • 37. Yadav, N.S., Shukla, P.S., Jha, A., Agarwal, P.K. & Jha, B. 2012. The SbS0S1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology, 12: 188.
  • 38. Yang, L., Ma, C., Wang, L., Chen, S. & Li, H. 2012. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. Journal of Plant Physiology, 169: 839-850.

EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY

Year 2021, , 263 - 274, 15.10.2021
https://doi.org/10.23902/trkjnat.947001

Abstract

This study aimed to determine a useful selection criterion for salt tolerance during the early development stage of sugar beet. Four sugar beet cultivars (Orthega, Valentina, FD Shoot, and Mohican) were exposed to NaCl stresses (Control, 5, 10, and 15 dS m-1), and morphological and physiological characteristics were investigated. Germination percentage, mean germination time (MGT), seedling length, and seedling fresh weight (SFW) in germination test; emergence percentage, mean emergence time (MET), root length, shoot length, plant fresh weight, relative chlorophyll content (Chl), relative water content (RWC) and electrolyte leakage of the plants grown in pod experiment were measured. The results showed that the maximum germination at control was recorded in FD Shoot, but it gave the lowest germination at 15 dS m-1. In the pod experiment, the highest emergence rate was detected in Orthega and Mohican at all levels of NaCl. Increased salinity delayed MET and led to reduction in shoot length, root length, and RWC of sugar beet cultivars. Relative Chl content and electrolyte leakage enhanced from 32.7 SPAD and 21.6% in control to 38.5 SPAD and 35.6% in 10 dS m-1, respectively. In general, there were significant differences among sugar beet cultivars, and they could keep the salinity up to 5 dS m-1 in terms of the investigated traits. It was concluded that relative Chl content and electrolyte leakage should be used a promising clue for selection of tolerant or sensitive sugar beet cultivars for salinity.

References

  • 1. Abo-Kassem, E.ED.M. 2007. Effects of Salinity: Calcium interaction on growth and nucleic acid metabolism in five spices of Chenopodiaceae. Turkish Journal of Botany, 31: 125-134.
  • 2. Almansouri, M., Kinet, J.M. & Lutts, S. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 231: 243-254.
  • 3. Amirjani, M.R. 2010. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 5(6): 350-360.
  • 4. Anonymous, 2003. International Rules for Seed Testing. The International Seed Testing Association (ISTA), Edition 2003/1, Bassersdorf, CH-Switzerland.
  • 5. Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5): 361-376.
  • 6. Dadkhah, A. 2011. Effect of salinity on growth and leaf photosynthesis of two sugar beet (Beta vulgaris L.) cultivars. Journal of Agricultural Science and Technology, 13(7): 1001-1012.
  • 7. Dkhil, B.B. & Denden, M. 2012. Effect of salt stress on growth, anthocyanins, membrane permeability and chlorophyll fluorescence of okra (Abelmoschus esculentus L.) seedlings. American Journal of Plant Physiology, 7(4): 174-183.
  • 8. Farooq, S. & Azam, F. 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of Plant Physiology, 163: 629-637.
  • 9. Ghoulam, C. & Fares, K. 2001. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed Science and Technology, 29: 357-364.
  • 10. Ghoulam, C., Foursy, A. & Fares, K. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1): 39-50.
  • 11. Hampson C.R. & Simpson, G.M. 1990. Effects of temperature, salt and osmotic pressure on early growth of wheat (Triticum aestivum L.). 1. Germination. Canadian Journal of Botany, 68: 524-528.
  • 12. Higazy, M.A., Shehata, M.M. & Allam, A.I. 1995. Free proline relation to salinity tolerance of three sugar beet varieties. Egyptian Journal of Agricultural Research, 13(1): 175-190.
  • 13. Jafarzadeh, A. & Aliasgharzad, N. 2007. Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia, 62(5): 562-564.
  • 14. Jamali, S.S., Borzouei, A., Aghamirzaei, M., Khosronejad, H.R. & Fathi, M. 2015. Cell membrane stability and biochemical response of seven wheat cultivars under salinity stress. Brazilian Journal of Botany, 38(1): 63-69.
  • 15. Jamil, M. & Rha, E.S. 2004. The effect of salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea L.). Plant Resources, 7(3): 226-232.
  • 16. Jamil, M., Ashraf, M., Rehman, S., Ahmad, M. & Rha, E.S. 2012. Salinity induced changes in cell membrane stability, protein and RNA contents. African Journal of Biotechnology, 11(24): 6476-6483.
  • 17. Kandil, A.A., Sharief, A.E., Abido, W.A.E. & Awed, A.M. 2014. Effect of gibberellic acid on germination behaviour of sugar beet cultivars under salt stress conditions of Egypt. Sugar Tech, 16(2): 211-221.
  • 18. Katerji, N., Van Hoorn, J.W., Hamdy, A. & Mastrorilli, M. 2000. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management, 43(1): 99-109.
  • 19. Kaya, M.D., Ipek, A. & Ozturk, A. 2003. Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turkish Journal of Agriculture and Forestry, 27(4): 221-227.
  • 20. Khayamim, S., Tavkol Afshari, R., Sadeghian, S.Y., Poustini, K., Roozbeh, F. & Abbasi, Z. 2014. Seed germination, plant establishment, and yield of sugar beet genotypes under salinity stress. Journal of Agricultural Science and Technology, 16(4): 779-790.
  • 21. Khorshid, A.M., Moghadam, F.A., Bernousi, I., Khayamim, S. & Rajabi, A. 2018. Comparison of some physiological responses to salinity and normal conditions in Sugar Beet. Indian Journal of Agricultural Research, 52(4): 362-367.
  • 22. Mahmoud, E.A. & Hill, M.J. 1981. Salt tolerance of sugar beet at various temperatures. New Zealand Journal of Agricultural Research, 24(1): 67-71.
  • 23. Mekki, B.B. & EL-Gazzar, M.M. 1999. Response of root yield and quality of sugar beet (Beta vulgaris L.) to irrigation with saline water and follar potassium fertilization. Annals of Agricultural Sciences, 44(1): 213-225.
  • 24. Mensah, J.K., Akomeah, P.A., Ikhajiagbe, B. & Ekpekurede, E.O. 2006. Effects of salinity on germination, growth and yield of five groundnut genotypes. African Journal of Biotechnology, 5(20): 1973-1979.
  • 25. Mostafavi, K. 2012. Effect of salt stress on germination and early seedling growth stage of sugar beet cultivars. American-Eurasian Journal of Sustainable Agriculture, 6: 120-125.
  • 26. Neumann, P.M. 1995. Inhabitation of content of germinating content root growth by salinity stress: Toxicity or an adaptive biophysical response. Pp. 299-304. In: Baluska, F., Ciamporova, M., Gasparikova, O. & Barlow, P.W. (eds). Structure and Function of Roots. The Netherlands: Kluwer Academic Publishers, 354 pp.
  • 27. Pinheiro, C., Ribeiro, I.C., Reisinger, V., Planchon, S., Veloso, M.M., Renaut, J., Eichacker, L. & Ricardo, C.P. 2018. Salinity effect on germination, seedling growth and cotyledon membrane complexes of a Portuguese salt marsh wild beet ecotype. Theoretical and Experimental Plant Physiology, 30(2): 113-127.
  • 28. Romano, A., Stevanato, P., Sorgona, A., Cacco, G. & Abenavoli, M.R. 2019. Dynamic response of key germination traits to NaCl stress in sugar beet seeds. Sugar Tech, 21(4): 661-671.
  • 29. Salimi, Z. & Boelt, B. 2019. Optimization of germination inhibitors eliminating from sugar beet (Beta vulgaris L.) seeds of different maturity classes. Agronomy, 9(11): 763.
  • 30. Shannon, M.C., Grieve, C.M., Lesch, S.M. & Draper, J.H. 2000. Analysis of salt tolerance in nine leafy vegetables irrigated with saline drainage water. Journal of the American Society for Horticultural Science, 125(5): 658-664.
  • 31. Skorupa, M., Gołębiewski, M., Kurnik, K., Niedojadło, J., Kęsy, J., Klamkowski, K., Wójcik, K., Treder, W., Tretyn, A. & Tyburski, J. 2019. Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor. BMC Plant Biology, 19(1): 1-18.
  • 32. Taghizadegan, M., Toorchi, M., Vahed, M.M. & Khayamim, S. 2019. Evaluation of sugar beet breeding populations based morpho-physiological characters under salinity stress. Pakistan Journal of Botany, 51(1): 11-17.
  • 33. Tahjib-UI-Arif, M., Sohag, A.A.M., Afrin, S., Bashar, K.K., Afrin, T., Mahamud, A.G.M., Polash, M.A.S., Hossain, M.T., Sohel, M.A.T., Brestic, M. & Murata, Y. 2019. Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture, 9(10): 223.
  • 34. Wang, Y., Stevanato, P., Yu, L., Zhao, H., Sun, X., Sun, F., Li, J. & Geng, G. 2017. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Journal of Plant Research, 130(6): 1079-1093.
  • 35. Wang, Y., Stevanato, P., Lv, C., Li, R. & Geng, G. 2019. Comparative physiological and proteomic analysis of two sugar beet genotypes with contrasting salt tolerance. Journal of Agricultural and Food Chemistry, 67(21): 6056-6073.
  • 36. Willenborg, C.J., Gulden, R.H., Johnson, E.N. & Shirtliffe, S.J. 2004. Germination characteristics of polymer-coated canola (Brassica napus L.) seeds subjected to moisture stress at different temperatures. Agronomy Journal, 96: 786-791.
  • 37. Yadav, N.S., Shukla, P.S., Jha, A., Agarwal, P.K. & Jha, B. 2012. The SbS0S1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology, 12: 188.
  • 38. Yang, L., Ma, C., Wang, L., Chen, S. & Li, H. 2012. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. Journal of Plant Physiology, 169: 839-850.
There are 38 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Article/Araştırma Makalesi
Authors

Engin Gökhan Kulan 0000-0002-7147-6896

Alper Arpacıoğlu This is me 0000-0003-3105-7504

Nurgül Ergin 0000-0002-7147-6896

Mehmet Demir Kaya 0000-0002-4681-2464

Publication Date October 15, 2021
Submission Date June 7, 2021
Acceptance Date October 1, 2021
Published in Issue Year 2021

Cite

APA Kulan, E. G., Arpacıoğlu, A., Ergin, N., Kaya, M. D. (2021). EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY. Trakya University Journal of Natural Sciences, 22(2), 263-274. https://doi.org/10.23902/trkjnat.947001
AMA Kulan EG, Arpacıoğlu A, Ergin N, Kaya MD. EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY. Trakya Univ J Nat Sci. October 2021;22(2):263-274. doi:10.23902/trkjnat.947001
Chicago Kulan, Engin Gökhan, Alper Arpacıoğlu, Nurgül Ergin, and Mehmet Demir Kaya. “EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY”. Trakya University Journal of Natural Sciences 22, no. 2 (October 2021): 263-74. https://doi.org/10.23902/trkjnat.947001.
EndNote Kulan EG, Arpacıoğlu A, Ergin N, Kaya MD (October 1, 2021) EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY. Trakya University Journal of Natural Sciences 22 2 263–274.
IEEE E. G. Kulan, A. Arpacıoğlu, N. Ergin, and M. D. Kaya, “EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY”, Trakya Univ J Nat Sci, vol. 22, no. 2, pp. 263–274, 2021, doi: 10.23902/trkjnat.947001.
ISNAD Kulan, Engin Gökhan et al. “EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY”. Trakya University Journal of Natural Sciences 22/2 (October 2021), 263-274. https://doi.org/10.23902/trkjnat.947001.
JAMA Kulan EG, Arpacıoğlu A, Ergin N, Kaya MD. EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY. Trakya Univ J Nat Sci. 2021;22:263–274.
MLA Kulan, Engin Gökhan et al. “EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY”. Trakya University Journal of Natural Sciences, vol. 22, no. 2, 2021, pp. 263-74, doi:10.23902/trkjnat.947001.
Vancouver Kulan EG, Arpacıoğlu A, Ergin N, Kaya MD. EVALUATION OF GERMINATION, EMERGENCE AND PHYSIOLOGICAL PROPERTIES OF SUGAR BEET CULTIVARS UNDER SALINITY. Trakya Univ J Nat Sci. 2021;22(2):263-74.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.