DISTINCTIVE SIRE1 RETROTRANSPOSON PATTERNS ON BARLEY CHROMOSOMES?
Year 2021,
Volume: 22 Issue: 1, 9 - 15, 15.04.2021
Elif Karlık
,
Nermin Gozukirmizi
Abstract
SIRE1 is an active and relatively high copy-number retroelement belongs to the Tyl/Copia long terminal repeat (LTR) retrotransposon superfamily. Distinctive SIRE1 elements (ENV and GAG) distributions in barley genome were observed by using fluorescent in situ hybridization (FISH). We performed PCR to obtain tetramethylrhodamine-dUTP (TRITC)-labelled probes. Localizations of SIRE1 ENV and GAG domains were demonstrated under confocal microscope on Hordeum vulgare L. cv. Hasat root preparations. Our results revealed the distributions of SIRE1 elements ENV and GAG in barley genome. These results may provide to uncover the organization of SIRE retrotransposon pattern in barley genome.
Thanks
The authors thank Dr. Stuart James Lucas for his kind revision.
References
- 1. Acevedo‐Garcia, J., Collins, N.C., Ahmadinejad, N., Ma, L., Houben, A., Bednarek, P., Benjdia, M., Freialdenhoven, A., Altmüller, J., Nürnberg, P., Reinhardt, R., Schulze-Lefert, P. & Panstruga, R. 2013. Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 126(12): 2969-2982. https://doi.org/10.1007/s00122-013-2186-6
- 2. Alipour, A., Tsuchimoto, S., Sakai, H., Ohmido, N. & Fukui, K. 2013. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, L Jatropha curcas. Biotechnology for Biofuel, 6(1): 129. https://doi.org/10.1186/1754-6834-6-129
- 3. Ananiev, E.V., Phillips, R.L. & Rines, H.W. 1998. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proceedings of the National Academy of Sciences of the USA, 95 (22): 13073-13078. https://doi.org/10.1073/pnas.95.22.13073
- 4. Baucom, R.S., Estill, J.C., Chaparro, C., Upshaw, N., Jogi, A., Deragon, J.M., Westerman, R.P., Sanmiguel, P.J. & Bennetzen, J.L. 2009. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genetics, 5(11): e1000732. https://doi.org/10.1371/journal.pgen.1000732
- 5. Bousios, A., Darzentas, N., Tsaftaris, A. & Pearce, S.R. 2010. Highly conserved motifs in noncoding regions of Sirevirus retrotransposons: the key for their pattern of distribution within and across plants?. BMC Genomics, 11: 89. https://doi.org/10.1186/1471-2164-11-89
- 6. Bustamante, F.O., Aliyeva-Schnorr, L., Fuchs, J., Beier, S. & Houben, A. 2017. Correlating the genetic and physical map of barley chromosome 3H revealed limitations of the FISH-based mapping of nearby single-copy probes caused by the dynamic structure of metaphase chromosomes. Cytogenetic and Genome Research, 152(2): 90-96. https://doi.org/10.1159/000478631
- 7. Cheng, Z., Dong, F., Langdon, T., Ouyang, S., Buell, C.R., Gu, M., Blattner, F.R. & Jiang, J. 2002. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 14(8): 1691-1704. https://doi.org/10.1105/tpc.003079
- 8. Friesen N., Brandes, A. & Heslop-Harrison, J. 2001. Diversity, origin and distribution of retrotransposons in conifers. Molecular Biology and Evolution, 18(7): 1176-1188. https://doi.org/10.1093/oxfordjournals.molbev.a003905.
- 9. Galindo-González, L., Mhiri, C., Deyholos, M.K. & Grandbastien, M.A. 2017. LTR-retrotransposons in plants: engines of evolution. Gene, 626: 14-25. https://doi.org/10.1016/j.gene.2017.04.051
- 10. Gao, X., Havecker, E.R., Baranov, P.V., Atkins, J.F. & Voytas, D.F. 2003. Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA, 9(12): 1422-1430. https://doi.org/10.1261/rna.5105503
- 11. Hausmann, M. & Cremer, C. 2003. Standardization of FISH-procedures: Summary of the first discussion workshop. Analytical Cellular Pathology, 25(4): 201-205. https://doi.org/10.1155/2003/427509
- 12. Havecker, E.R., Gao, X. & Voytas, D.F. 2005. The sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to dynein light chain. Plant Physiology, 139(2): 857-868. https://doi.org/10.1104/pp.105.065680
- 13. Houben, A. & Schubert, I. 2003. DNA and proteins of plant centromeres. Current Opinion in Plant Biology, 6(6): 554-560. https://doi.org/10.1016/j.pbi.2003.09.007
- 14. Hudakova, S., Michalek, W., Presting, G.G., Ten Hoopen, R., Dos Santos, K., Jasencakova, Z. & Schubert, I. 2001. Sequence organization of barley centromeres. Nucleic Acids Research, 29(24): 5029-5035. https://doi.org/10.1093/nar/29.24.5029
- 15. Hughes, A.L., Friedman, R., Ekollu, V. & Rose, J.R. 2003. Non-random association of transposable elements with duplicated genomic blocks in Arabidopsis thaliana. Molecular Phylogenetics and Evolution, 29(3): 410-416. https://doi.org/10.1016/S1055-7903(03)00262-8
- 16. Jenkins, G. & Hasterok, R. 2001. Painting whole chromosome sets in hybrids using GISH, in Advanced Molecular Cytogenetics -a practical course manual. Wydawnictwo Uniwersytetu Śląskiego. 35-48.
- 17. Jenkins, G. & Hasterok, R. 2007. BAC 'landing' on chromosomes of Brachypodium distachyon for comparative genome alignment. Nature Protocols, 2: 88-98. https://doi.org/10.1038/nprot.2006.490
- 18. Karlik, E., Marakli, S. & Gozukirmizi, N. 2018. Two lncRNAs expression profiles in salt stressed barley (Hordeum vulgare L.) roots. Cytologia, 83(1): 37-43. https://doi.org/10.1508/cytologia.83.37
- 19. Kiseleva, A.V., Kirov, I.V. & Khrustaleva, L.I. 2014. Chromosomal organization of centromeric Ty3/gypsy retrotransposons in Allium cepa L. and Allium fistulosum L. Russian Journal of Genetics, 50(6): 670-676. https://doi.org/10.1134/S102279541404005X
- 20. Kolano, B., Bednara, E. & Weiss-Schneeweiss, H. 2013. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae). Plant Cell Reports, 32(10): 1575-1588. https://doi.org/10.1007/s00299-013-1468-4
- 21. Kumar, A. & Bennetzen, J.L. 1999. Plant retrotransposons. Annual Review of Genetics, 33: 479-532. https://doi.org/10.1146/annurev.genet.33.1.479
- 22. Laten, H.M., Majumdar, A. & Gaucher, E.A. 1998. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proceedings of the National Academy of Sciences of the USA, 95(12): 6897-6902. https://doi.org/10.1073/pnas.95.12.6897
- 23. Lee, S.I., Park, K.C., Son, J.H., Hwang, Y.J., Lim, K.B., Song, Y.S., Kim, J.H. & Kim, N.S. 2013. Isolation and characterization of novel Ty1-copia-like retrotransposons from lily. Genome, 56(9): 495-503. https://doi.org/10.1139/gen-2013-0088
- 24. Li, Y., Zuo, S., Zhang, Z., Li, Z., Han, J., Chu, Z., Hasterok, R. & Wang, K. 2018. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. The Plant Journal, 93(6): 1088-1101. https://doi.org/10.1111/tpj.13832
- 25. Lin, J.Y., Jacobus, B.H., Sanmiguel, P., Walling, J.G., Yuan, Y., Shoemaker, R.C., Young, N.D. & Jackson, S.A. 2005. Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics, 170(3): 1221-1230. https://doi.org/10.1534/genetics.105.041616
- 26. Llorens, C., Munoz-Pomer, A., Bernard, L., Botella, H. & Moya, A. 2009. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biology Direct, 4(41). https://doi.org/10.1186/1745-6150-4-41
- 27. Mafra, I., Silva, S.A., Moreira, E.J.M.O., Ferreira Da Silva, C.S., Beatriz, M. & Oliveira, P.P. 2008. Comparative study of DNA extraction methods for soybean derived food products. Food Control, 19(12): 1183-1190. https://doi.org/10.1016/j.foodcont.2008.01.004
- 28. Martinez-Zapater, J.M., Estelle, M.A. & Somerville, C.R. 1986. A highly repeated DNA sequence in Arabidopsis thaliana. Molecular and General Genetics, 204(3): 417-423. https://doi.org/10.1007/BF00331018
- 29. Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S. O., Wicker, T., Radchuk, V., Dockter, C., Hedley, P. E., Russell, J., Bayer, M., Ramsay, L., Liu, H., Haberer, G., Zhang, X. Q., Zhang, Q., Barrero, R. A., Li, L., Taudien, S., Groth, M., Felder, M., Hastie, A., Šimková, H., Staňková, H., Vrána, J., Chan, S., Muñoz-Amatriaín, M., Ounit, R., Wanamaker, S., Bolser, D., Colmsee, C., Schmutzer, T., Aliyeva-Schnorr, L., Grasso, S., Tanskanen, J., Chailyan, A., Sampath, D., Heavens, D., Clissold, L., Cao, S., Chapman, B., Dai, F., Han, Y., Li, H., Li, X., Lin, C., McCooke, J. K., Tan, C., Wang, P., Wang, S., Yin, S., Zhou, G., Poland, J. A., Bellgard, M. I., Borisjuk, L., Houben, A., Doležel, J., Ayling, S., Lonardi, S., Kersey, P., Langridge, P., Muehlbauer, G. J., Clark, M. D., Caccamo, M., Schulman, A. H., Mayer, K. F. X., Platzer, M., Close, T. J., Scholz, U., Hansson, M., Zhang, G., Braumann, I., Spannagl, M., Li, C., Waugh, R. and Stein, N. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 26: 427-433. https://doi.org/10.1038/nature22043
- 30. Mccarthy, E.M., Liu, J., Lizhi, G. & Mcdonald, J.F. 2002. Long terminal repeat retrotransposons of Oryza sativa. Genome Biology, 3(10): 1-11. https://doi.org/10.1186/gb-2002-3-10-research0053
- 31. Pearce, S.R., Pich, U., Harrison, G., Flavell, A.J., Heslop-Harrison, J.S., Schubert, I. & Kumar, A. 1996. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Research, 4(5): 357–364. https://doi.org/10.1007/BF02257271
- 32. Peterson-Burch, B.D. & Voytas, D.F. 2002. Genes of the Pseudoviridae (Ty1/copia retrotransposons). Molecular Biology and Evolution, 19(11): 1832-1845. https://doi.org/10.1093/oxfordjournals.molbev.a004008
- 33. Presting, G.G., Malysheva, L., Fuchs, J. & Schubert, I. 1998. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. The Plant Journal, 16(6): 721–728. https://doi.org/10.1046/j.1365-313x.1998.00341.x
- 34. Salvo-Garrido, H.G., Travella, S., Schwarzacher, T., Harwood, W.A. & Snape, J.W. 2001. An efficient method for the physical mapping of transgenes in barley using in situ hybridization. Genome, 44(1): 104-110. https://doi.org/10.1139/gen-44-1-104
- 35. Sandmeyer, S.B., Aye, M. & Menees, T. 2002. Ty3, a position-specific, gypsy-like element in Saccharomyces cerevisiae. In: Mobile DNA II, Craig, N.L., Craigie, R., Gellert, M., Lambowitz, A.M. (eds.). Washington DC: ASM Press. 663-683.
- 36. Schnable, P.S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., Kruchowski, S. S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S. M., Belter, E., Du, F., Kim, K., Abbott, R. M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S. M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M. J., McMahan, L., Van Buren, P. & Vaughn, M.W. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326(5956), 1112-1115. https://doi.org/10.1126/science.1178534
- 37. Schulman, A.H. & Wicker, T. 2013. A field guide to transposable elements, In: Plant Transposons and Genome Dynamics in Evolution, Fedoroff, N.V. (ed.). Oxford: Wiley Blackwell. 15-40.
- 38. Shams, I. & Raskina, O. 2018. Intraspecific and intraorganismal copy number dynamics of retrotransposons and tandem repeat in Aegilops speltoides Tausch (Poaceae, Triticeae). Protoplasma, 255(4): 1023-1038. https://doi.org/10.1007/s00709-018-1212-6
- 39. The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796-815. https://doi.org/10.1038/35048692
- 40. Vicient, C.M., Kalendar, R., Anamthawat-Jansson, K. & Schulman, A.H. 1999. Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica, 107(1-3): 53-63. https://doi.org/10.1023/A:1003929913398
- 41. Vicient, C.M. & Casacuberta, J.M. 2017. Impact of transposable elements on polyploid plant genomes. Annals of Botany, 120(2): 195-207. https://doi.org/10.1093/aob/mcx078
- 42. Voytas, D.F. & Boeke, J.D. 2002. Ty1 and Ty5 of Saccharomyces cereviceae, In: Mobile DNA II, Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M. (eds.). Washington DC: ASM Press. 631-662.
- 43. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J., Capy, P., Chalhoub, B., Flavell, A.J., Leroy, P., Morgante, M., Panaud, O., Paux, E., Sanmiguel, P. & Schulman, A.H. 2007. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12): 973-982. https://doi.org/10.1038/nrg2165
- 44. Weil, C.F. & Wessler, S.R. 1993. Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell, 5(5): 515-522. https://doi.org/10.1105/tpc.5.5.515
Year 2021,
Volume: 22 Issue: 1, 9 - 15, 15.04.2021
Elif Karlık
,
Nermin Gozukirmizi
Abstract
SIRE1, Tyl/Copia Uzun Uç Tekrarlı (Long Terminal Repeats- LTR) retrotranspozon üst ailesine ait olan aktif, nispeten yüksek kopyalı bir retroementtir. Arpa genomundaki ayırt edici SIRE1 elementlerinin (ENV ve GAG) dağılımları floresan in situ hibridizasyonu (FISH) kullanılarak gözlemlendi. Tetramethylrhodamine-dUTP (TRITC)-işaretli probların elde edilmesinde PCR gerçekleştirildi. SIRE1 ENV ve GAG domainlerinin yerleşimleri, Hordeum vulgare L. cv. Hasat kök preparatlarında konfokal mikroskobu altında gösterildi. Sonuçlarımız, arpa genomundaki SIRE1 elementlerinin ENV ve GAG dağılımlarını göstermektedir. Bu sonuçlar, SIRE1 elementlerinin arpa genomunun organizasyonunun ortaya çıkarılmasına katkı sağlayacaktır.
References
- 1. Acevedo‐Garcia, J., Collins, N.C., Ahmadinejad, N., Ma, L., Houben, A., Bednarek, P., Benjdia, M., Freialdenhoven, A., Altmüller, J., Nürnberg, P., Reinhardt, R., Schulze-Lefert, P. & Panstruga, R. 2013. Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 126(12): 2969-2982. https://doi.org/10.1007/s00122-013-2186-6
- 2. Alipour, A., Tsuchimoto, S., Sakai, H., Ohmido, N. & Fukui, K. 2013. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, L Jatropha curcas. Biotechnology for Biofuel, 6(1): 129. https://doi.org/10.1186/1754-6834-6-129
- 3. Ananiev, E.V., Phillips, R.L. & Rines, H.W. 1998. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proceedings of the National Academy of Sciences of the USA, 95 (22): 13073-13078. https://doi.org/10.1073/pnas.95.22.13073
- 4. Baucom, R.S., Estill, J.C., Chaparro, C., Upshaw, N., Jogi, A., Deragon, J.M., Westerman, R.P., Sanmiguel, P.J. & Bennetzen, J.L. 2009. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genetics, 5(11): e1000732. https://doi.org/10.1371/journal.pgen.1000732
- 5. Bousios, A., Darzentas, N., Tsaftaris, A. & Pearce, S.R. 2010. Highly conserved motifs in noncoding regions of Sirevirus retrotransposons: the key for their pattern of distribution within and across plants?. BMC Genomics, 11: 89. https://doi.org/10.1186/1471-2164-11-89
- 6. Bustamante, F.O., Aliyeva-Schnorr, L., Fuchs, J., Beier, S. & Houben, A. 2017. Correlating the genetic and physical map of barley chromosome 3H revealed limitations of the FISH-based mapping of nearby single-copy probes caused by the dynamic structure of metaphase chromosomes. Cytogenetic and Genome Research, 152(2): 90-96. https://doi.org/10.1159/000478631
- 7. Cheng, Z., Dong, F., Langdon, T., Ouyang, S., Buell, C.R., Gu, M., Blattner, F.R. & Jiang, J. 2002. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 14(8): 1691-1704. https://doi.org/10.1105/tpc.003079
- 8. Friesen N., Brandes, A. & Heslop-Harrison, J. 2001. Diversity, origin and distribution of retrotransposons in conifers. Molecular Biology and Evolution, 18(7): 1176-1188. https://doi.org/10.1093/oxfordjournals.molbev.a003905.
- 9. Galindo-González, L., Mhiri, C., Deyholos, M.K. & Grandbastien, M.A. 2017. LTR-retrotransposons in plants: engines of evolution. Gene, 626: 14-25. https://doi.org/10.1016/j.gene.2017.04.051
- 10. Gao, X., Havecker, E.R., Baranov, P.V., Atkins, J.F. & Voytas, D.F. 2003. Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA, 9(12): 1422-1430. https://doi.org/10.1261/rna.5105503
- 11. Hausmann, M. & Cremer, C. 2003. Standardization of FISH-procedures: Summary of the first discussion workshop. Analytical Cellular Pathology, 25(4): 201-205. https://doi.org/10.1155/2003/427509
- 12. Havecker, E.R., Gao, X. & Voytas, D.F. 2005. The sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to dynein light chain. Plant Physiology, 139(2): 857-868. https://doi.org/10.1104/pp.105.065680
- 13. Houben, A. & Schubert, I. 2003. DNA and proteins of plant centromeres. Current Opinion in Plant Biology, 6(6): 554-560. https://doi.org/10.1016/j.pbi.2003.09.007
- 14. Hudakova, S., Michalek, W., Presting, G.G., Ten Hoopen, R., Dos Santos, K., Jasencakova, Z. & Schubert, I. 2001. Sequence organization of barley centromeres. Nucleic Acids Research, 29(24): 5029-5035. https://doi.org/10.1093/nar/29.24.5029
- 15. Hughes, A.L., Friedman, R., Ekollu, V. & Rose, J.R. 2003. Non-random association of transposable elements with duplicated genomic blocks in Arabidopsis thaliana. Molecular Phylogenetics and Evolution, 29(3): 410-416. https://doi.org/10.1016/S1055-7903(03)00262-8
- 16. Jenkins, G. & Hasterok, R. 2001. Painting whole chromosome sets in hybrids using GISH, in Advanced Molecular Cytogenetics -a practical course manual. Wydawnictwo Uniwersytetu Śląskiego. 35-48.
- 17. Jenkins, G. & Hasterok, R. 2007. BAC 'landing' on chromosomes of Brachypodium distachyon for comparative genome alignment. Nature Protocols, 2: 88-98. https://doi.org/10.1038/nprot.2006.490
- 18. Karlik, E., Marakli, S. & Gozukirmizi, N. 2018. Two lncRNAs expression profiles in salt stressed barley (Hordeum vulgare L.) roots. Cytologia, 83(1): 37-43. https://doi.org/10.1508/cytologia.83.37
- 19. Kiseleva, A.V., Kirov, I.V. & Khrustaleva, L.I. 2014. Chromosomal organization of centromeric Ty3/gypsy retrotransposons in Allium cepa L. and Allium fistulosum L. Russian Journal of Genetics, 50(6): 670-676. https://doi.org/10.1134/S102279541404005X
- 20. Kolano, B., Bednara, E. & Weiss-Schneeweiss, H. 2013. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae). Plant Cell Reports, 32(10): 1575-1588. https://doi.org/10.1007/s00299-013-1468-4
- 21. Kumar, A. & Bennetzen, J.L. 1999. Plant retrotransposons. Annual Review of Genetics, 33: 479-532. https://doi.org/10.1146/annurev.genet.33.1.479
- 22. Laten, H.M., Majumdar, A. & Gaucher, E.A. 1998. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proceedings of the National Academy of Sciences of the USA, 95(12): 6897-6902. https://doi.org/10.1073/pnas.95.12.6897
- 23. Lee, S.I., Park, K.C., Son, J.H., Hwang, Y.J., Lim, K.B., Song, Y.S., Kim, J.H. & Kim, N.S. 2013. Isolation and characterization of novel Ty1-copia-like retrotransposons from lily. Genome, 56(9): 495-503. https://doi.org/10.1139/gen-2013-0088
- 24. Li, Y., Zuo, S., Zhang, Z., Li, Z., Han, J., Chu, Z., Hasterok, R. & Wang, K. 2018. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. The Plant Journal, 93(6): 1088-1101. https://doi.org/10.1111/tpj.13832
- 25. Lin, J.Y., Jacobus, B.H., Sanmiguel, P., Walling, J.G., Yuan, Y., Shoemaker, R.C., Young, N.D. & Jackson, S.A. 2005. Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics, 170(3): 1221-1230. https://doi.org/10.1534/genetics.105.041616
- 26. Llorens, C., Munoz-Pomer, A., Bernard, L., Botella, H. & Moya, A. 2009. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biology Direct, 4(41). https://doi.org/10.1186/1745-6150-4-41
- 27. Mafra, I., Silva, S.A., Moreira, E.J.M.O., Ferreira Da Silva, C.S., Beatriz, M. & Oliveira, P.P. 2008. Comparative study of DNA extraction methods for soybean derived food products. Food Control, 19(12): 1183-1190. https://doi.org/10.1016/j.foodcont.2008.01.004
- 28. Martinez-Zapater, J.M., Estelle, M.A. & Somerville, C.R. 1986. A highly repeated DNA sequence in Arabidopsis thaliana. Molecular and General Genetics, 204(3): 417-423. https://doi.org/10.1007/BF00331018
- 29. Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S. O., Wicker, T., Radchuk, V., Dockter, C., Hedley, P. E., Russell, J., Bayer, M., Ramsay, L., Liu, H., Haberer, G., Zhang, X. Q., Zhang, Q., Barrero, R. A., Li, L., Taudien, S., Groth, M., Felder, M., Hastie, A., Šimková, H., Staňková, H., Vrána, J., Chan, S., Muñoz-Amatriaín, M., Ounit, R., Wanamaker, S., Bolser, D., Colmsee, C., Schmutzer, T., Aliyeva-Schnorr, L., Grasso, S., Tanskanen, J., Chailyan, A., Sampath, D., Heavens, D., Clissold, L., Cao, S., Chapman, B., Dai, F., Han, Y., Li, H., Li, X., Lin, C., McCooke, J. K., Tan, C., Wang, P., Wang, S., Yin, S., Zhou, G., Poland, J. A., Bellgard, M. I., Borisjuk, L., Houben, A., Doležel, J., Ayling, S., Lonardi, S., Kersey, P., Langridge, P., Muehlbauer, G. J., Clark, M. D., Caccamo, M., Schulman, A. H., Mayer, K. F. X., Platzer, M., Close, T. J., Scholz, U., Hansson, M., Zhang, G., Braumann, I., Spannagl, M., Li, C., Waugh, R. and Stein, N. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 26: 427-433. https://doi.org/10.1038/nature22043
- 30. Mccarthy, E.M., Liu, J., Lizhi, G. & Mcdonald, J.F. 2002. Long terminal repeat retrotransposons of Oryza sativa. Genome Biology, 3(10): 1-11. https://doi.org/10.1186/gb-2002-3-10-research0053
- 31. Pearce, S.R., Pich, U., Harrison, G., Flavell, A.J., Heslop-Harrison, J.S., Schubert, I. & Kumar, A. 1996. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Research, 4(5): 357–364. https://doi.org/10.1007/BF02257271
- 32. Peterson-Burch, B.D. & Voytas, D.F. 2002. Genes of the Pseudoviridae (Ty1/copia retrotransposons). Molecular Biology and Evolution, 19(11): 1832-1845. https://doi.org/10.1093/oxfordjournals.molbev.a004008
- 33. Presting, G.G., Malysheva, L., Fuchs, J. & Schubert, I. 1998. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. The Plant Journal, 16(6): 721–728. https://doi.org/10.1046/j.1365-313x.1998.00341.x
- 34. Salvo-Garrido, H.G., Travella, S., Schwarzacher, T., Harwood, W.A. & Snape, J.W. 2001. An efficient method for the physical mapping of transgenes in barley using in situ hybridization. Genome, 44(1): 104-110. https://doi.org/10.1139/gen-44-1-104
- 35. Sandmeyer, S.B., Aye, M. & Menees, T. 2002. Ty3, a position-specific, gypsy-like element in Saccharomyces cerevisiae. In: Mobile DNA II, Craig, N.L., Craigie, R., Gellert, M., Lambowitz, A.M. (eds.). Washington DC: ASM Press. 663-683.
- 36. Schnable, P.S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., Kruchowski, S. S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S. M., Belter, E., Du, F., Kim, K., Abbott, R. M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S. M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M. J., McMahan, L., Van Buren, P. & Vaughn, M.W. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326(5956), 1112-1115. https://doi.org/10.1126/science.1178534
- 37. Schulman, A.H. & Wicker, T. 2013. A field guide to transposable elements, In: Plant Transposons and Genome Dynamics in Evolution, Fedoroff, N.V. (ed.). Oxford: Wiley Blackwell. 15-40.
- 38. Shams, I. & Raskina, O. 2018. Intraspecific and intraorganismal copy number dynamics of retrotransposons and tandem repeat in Aegilops speltoides Tausch (Poaceae, Triticeae). Protoplasma, 255(4): 1023-1038. https://doi.org/10.1007/s00709-018-1212-6
- 39. The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796-815. https://doi.org/10.1038/35048692
- 40. Vicient, C.M., Kalendar, R., Anamthawat-Jansson, K. & Schulman, A.H. 1999. Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica, 107(1-3): 53-63. https://doi.org/10.1023/A:1003929913398
- 41. Vicient, C.M. & Casacuberta, J.M. 2017. Impact of transposable elements on polyploid plant genomes. Annals of Botany, 120(2): 195-207. https://doi.org/10.1093/aob/mcx078
- 42. Voytas, D.F. & Boeke, J.D. 2002. Ty1 and Ty5 of Saccharomyces cereviceae, In: Mobile DNA II, Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M. (eds.). Washington DC: ASM Press. 631-662.
- 43. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J., Capy, P., Chalhoub, B., Flavell, A.J., Leroy, P., Morgante, M., Panaud, O., Paux, E., Sanmiguel, P. & Schulman, A.H. 2007. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12): 973-982. https://doi.org/10.1038/nrg2165
- 44. Weil, C.F. & Wessler, S.R. 1993. Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell, 5(5): 515-522. https://doi.org/10.1105/tpc.5.5.515