KOAH, COVID-19 için nasıl beklenenden daha düşük bir risk oluşturdu?
Year 2022,
Volume: 3 Issue: 1, 10 - 14, 31.01.2022
Pınar Mutlu
,
Arzu Mirici
Abstract
Kronik obstrüktif akciğer hastalığı (KOAH), dünya nüfusunun %5'inden fazlasını etkileyen ilerleyici hava akımı kısıt-laması ile karakterize bir solunum hastalığıdır. Hastalık, hastanın solunum semptomlarının kötüleşmesine ve ilaç değişikliğine neden olan alevlenme atakları ile ilerler. Bu alevlenmelerin %70'i viral ve bakteriyel enfeksiyonlardan kaynaklanır.
COVID-19 pandemisi ilk başladığında dünya genelindeki tüm göğüs hastalıkları uzmanlarının beklentisi, KOAH hastalarının daha sık alevlenmeler ve pnömoni nedeniyle hastaneye yatırılması ve bu hastalarda gelişen komplikasyonlar nedeniyle mortalitenin daha yüksek olmasıydı. Ancak ilerleyen günlerde hastaneye başvuran hasta gruplarında KOAH hastaları beklendiği kadar yüksek çıkmadı. Bu yazımızda bunun olası nedenlerini paylaşmak istedik
References
- 1. Toru U, Ayada C, Genç O, et al. Serum levels of RAAS components in COPD [abstract]. Eur Respir J 2015;46 (suppl 59):PA3970.
- 2. Bhat TA, Panzica L, Kalathil SG, et al. Immune dysfunc-tion in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc 2015;12 Suppl 2(Suppl 2):169-75.
- 3. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011;378(9795):1015-26.
- 4. Singanayagam A, Glanville N, Girkin JL, et al. Corticos-teroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nat Commun 2018;9:2229.
- 5. Leung JM, Yang CX, Tam A, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur Respir J 2020;55: 2000688.
- 6. Emami A, Javanmardi F, Pirbonyeh N, et al. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch Acad Emerg Med 2020;8:e35.
- 7. Grasselli G, Zangrillo A, Zanella A, et al. Baseline cha-racteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020;323:1574-81.
- 8. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteris-tics of Covid-19 in New York City. N Engl J Med 2020;382:2372-4.
- 9. Halpin DMG, Faner R, Sibila O, et al. Do chronic respi-ratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir Med 2020;8:436-8.
- 10. Zhang JJ, Dong X, Cao YY, et al. Clinical characteris-tics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy 2020;75:1730-41.
- 11. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.
- 12. Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med 2020;167:105941.
- 13. Wang B, Li R, Lu Z, et al. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging (Albany NY) 2020;12:6049-57.
- 14. Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalen-ce, severity and mortality associated with COPD and smo-king in patients with COVID-19: A rapid systematic review and meta-analysis. PLoS ONE 2020;15:e0233147.
- 15. Ma Y, Tong X, Liu Y, et al. ACE gene polymorphism is associated with COPD and COPD with pulmonary hypertension: a meta-analysis. Int J Chron Obstruct Pulmon Dis 2018;13:2435-46.
- 16. Ulasli SS, Eyuboglu FO, Verdi H, et al. Associations between endothelial nitric oxide synthase A/B, angiotensin converting enzyme I/D and serotonin transporter L/S gene polymorphisms with pulmonary hypertension in COPD patients. Mol Biol Rep 2013;40:5625-33.
- 17. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112-6.
- 18. Imai Y, Kuba K, Penninger JM. The discovery of angi-otensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008;93(5):543-8.
- 19. Kuba K, Imai Y, Rao S, et al. A crucial role of angio-tensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;11:875-9.
- 20. Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharma-col 2006;6(3): 271-6.
- 21. Halpin DMG, Singh D, Hadfield RM. Inhaled corticos-teroids and COVID-19: A systematic review and clinical perspective [editorial]. Eur Respir J 2020;55(5):2001009.
- 22. Bochkov YA, Busse WW, Brockman-Schneider RA, et al. Budesonide and formoterol effects on rhinovirus replica-tion and epithelial cell cytokine responses. Respir Res 2013;14:98.
- 23. Southworth T, Pattwell C, Khan N, et al. Increased type 2 inflammation post rhinovirus infection in patients with moderate asthma. Cytokine 2020;125:154857.
- 24. Yamaya M, Nishimura H, Deng X, et al. Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine produc-tion by primary cultures of human nasal and tracheal epithe-lial cells. Respir Investig 2020;58:155-68.
- 25. Matsuyama S, Kawase M, Nao N, et al. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replica-tion by targeting viral NSP15 [preliminary report]. 2020.03.11.987016. Located at: https://www.biorxiv.org/ cotent/10.1101/2020.03.11.987016v1
- 26. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease 2019 Report. Global Initiative for Chronic Obstructive Lung Disease Inc.; 2019.
- 27. McDonough JE, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 2011;365:1567-75.
- 28. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 2009;360(23):2445-54.
- 29. Harkness LM, Kanabar V, Sharma HS, et al. Pulmo-nary vascular changes in asthma and COPD. Pulm Pharma-col Ther 2014;29:144-55.
- 30. Martínez-García MA, de la Rosa Carrillo D, Soler-Cataluña JJ, et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pul-monary disease. Am J Respir Crit Care Med 2013;187:823-31.
- 31. Huang CT, Tsai YJ, Wu HD, et al. Impact of non-tuberculous mycobacteria on pulmonary function decline in chronic obstructive pulmonary disease. Int J Tuberc Lung Dis 2012;16:539-45.
- 32. Oliver BG, Robinson P, Peters M, et al. Viral infections and asthma: An inflammatory interface? Eur Respir J 2014;44:1666-81.
- 33. Zhang H, Zhou P, Wei Y, et al. Histopathologic chan-ges and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020;172:629-32.
- 34. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukar-yotic cells. Infection and Immunity 2005;73:1907-16.
- 35. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress synd-rome. Lancet Respir Med 2020;8:420-2.
- 36. Tian S, Hu W, Niu L, et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumo-nia in two patients with lung cancer. J Thorac Oncol 2020;15:700-4.
- 37. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020;71:762-8.
- 38 .Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 2008;359:2355-65.
- 39. Lapperre TS, Postma DS, Gosman MM, et al. Relation between duration of smoking cessation and bronchial inf-lammation in COPD. Thorax 2006;61:115-21.
- 40. Gamble E, Grootendorst DC, Hattotuwa K, et al. Airway mucosal inflammation in COPD is similar in smo-kers and ex-smokers: A pooled analysis. Eur Respir J 2007;30:467-71.
- 41. Matkovic Z, Miravitlles M. Chronic bronchial infection in COPD. Is there an infective phenotype? Respir Med 2013;107:10-22.
- 42. Simpson JL, Baines KJ, Horvat JC, et al. COPD is characterized by increased detection of Haemophilus influ-enzae, Streptococcus pneumoniae and a deficiency of Bacil-lus species. Respirology 2016;21:697-704.
- 43. McManus TE, Marley AM, Baxter N, et al. High levels of Epstein-Barr virus in COPD. Eur Respir J 2008;31:1221-6.
- 44. Tan DB, Amran FS, Teo TH, et al. Levels of CMV-reactive antibodies correlate with the induction of CD28(null) T cells and systemic inflammation in chronic obstructive pulmonary disease (COPD). Cell Mol Immunol 2016;13:551-3.
- 45. Sethi S, Maloney J, Grove L, et al. Airway inflamma-tion and bronchial bacterial colonization in chronic obstruc-tive pulmonary disease. Am J Respir Crit Care Med 2006; 173:991-8.
- 46. Cabrera-Rubio R, Garcia-Núñez M, Setó L, et al. Mic-robiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol 2012;50:3562-8.
- 47. Pragman AA, Kim HB, Reilly CS, et al. The lung mic-robiome in moderate and severe chronic obstructive pulmo-nary disease. PLoS One 2012;7:e47305.
- 48. Huang YJ, Kim E, Cox MJ, et al. A persistent and diverse airway microbiota present during chronic obstructi-ve pulmonary disease exacerbations. OMICS 2010;14:9-59.
- 49. Bosch AATM, Biesbroek G, Trzcinski K, et al. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 2013;9:e1003057.
How did COPD pose a lower risk than expected for COVID19?
Year 2022,
Volume: 3 Issue: 1, 10 - 14, 31.01.2022
Pınar Mutlu
,
Arzu Mirici
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by progressive airflow restriction affecting more than 5% of the world's popula-tion. The disease progresses with exacerbation attacks, leading to worsening of the patient's respiratory symp-toms and drug change. 70% of these exacerbations are caused by viral and bacterial infections. At the beginning of the pandemic, the expectation of all chest disease specialists worldwide was that COPD patients would be hospitalized for more frequent exacerbations and pneu-monia, and mortality would be higher in these patients due to developing complications. However, in the fol-lowing days, COPD patients were not as high as ex-pected in patient groups admitted to the hospital. In this article, we wanted to share possible reasons for this.
References
- 1. Toru U, Ayada C, Genç O, et al. Serum levels of RAAS components in COPD [abstract]. Eur Respir J 2015;46 (suppl 59):PA3970.
- 2. Bhat TA, Panzica L, Kalathil SG, et al. Immune dysfunc-tion in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc 2015;12 Suppl 2(Suppl 2):169-75.
- 3. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011;378(9795):1015-26.
- 4. Singanayagam A, Glanville N, Girkin JL, et al. Corticos-teroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nat Commun 2018;9:2229.
- 5. Leung JM, Yang CX, Tam A, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur Respir J 2020;55: 2000688.
- 6. Emami A, Javanmardi F, Pirbonyeh N, et al. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch Acad Emerg Med 2020;8:e35.
- 7. Grasselli G, Zangrillo A, Zanella A, et al. Baseline cha-racteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020;323:1574-81.
- 8. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteris-tics of Covid-19 in New York City. N Engl J Med 2020;382:2372-4.
- 9. Halpin DMG, Faner R, Sibila O, et al. Do chronic respi-ratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir Med 2020;8:436-8.
- 10. Zhang JJ, Dong X, Cao YY, et al. Clinical characteris-tics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy 2020;75:1730-41.
- 11. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.
- 12. Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med 2020;167:105941.
- 13. Wang B, Li R, Lu Z, et al. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging (Albany NY) 2020;12:6049-57.
- 14. Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalen-ce, severity and mortality associated with COPD and smo-king in patients with COVID-19: A rapid systematic review and meta-analysis. PLoS ONE 2020;15:e0233147.
- 15. Ma Y, Tong X, Liu Y, et al. ACE gene polymorphism is associated with COPD and COPD with pulmonary hypertension: a meta-analysis. Int J Chron Obstruct Pulmon Dis 2018;13:2435-46.
- 16. Ulasli SS, Eyuboglu FO, Verdi H, et al. Associations between endothelial nitric oxide synthase A/B, angiotensin converting enzyme I/D and serotonin transporter L/S gene polymorphisms with pulmonary hypertension in COPD patients. Mol Biol Rep 2013;40:5625-33.
- 17. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112-6.
- 18. Imai Y, Kuba K, Penninger JM. The discovery of angi-otensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008;93(5):543-8.
- 19. Kuba K, Imai Y, Rao S, et al. A crucial role of angio-tensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;11:875-9.
- 20. Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharma-col 2006;6(3): 271-6.
- 21. Halpin DMG, Singh D, Hadfield RM. Inhaled corticos-teroids and COVID-19: A systematic review and clinical perspective [editorial]. Eur Respir J 2020;55(5):2001009.
- 22. Bochkov YA, Busse WW, Brockman-Schneider RA, et al. Budesonide and formoterol effects on rhinovirus replica-tion and epithelial cell cytokine responses. Respir Res 2013;14:98.
- 23. Southworth T, Pattwell C, Khan N, et al. Increased type 2 inflammation post rhinovirus infection in patients with moderate asthma. Cytokine 2020;125:154857.
- 24. Yamaya M, Nishimura H, Deng X, et al. Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine produc-tion by primary cultures of human nasal and tracheal epithe-lial cells. Respir Investig 2020;58:155-68.
- 25. Matsuyama S, Kawase M, Nao N, et al. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replica-tion by targeting viral NSP15 [preliminary report]. 2020.03.11.987016. Located at: https://www.biorxiv.org/ cotent/10.1101/2020.03.11.987016v1
- 26. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease 2019 Report. Global Initiative for Chronic Obstructive Lung Disease Inc.; 2019.
- 27. McDonough JE, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 2011;365:1567-75.
- 28. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 2009;360(23):2445-54.
- 29. Harkness LM, Kanabar V, Sharma HS, et al. Pulmo-nary vascular changes in asthma and COPD. Pulm Pharma-col Ther 2014;29:144-55.
- 30. Martínez-García MA, de la Rosa Carrillo D, Soler-Cataluña JJ, et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pul-monary disease. Am J Respir Crit Care Med 2013;187:823-31.
- 31. Huang CT, Tsai YJ, Wu HD, et al. Impact of non-tuberculous mycobacteria on pulmonary function decline in chronic obstructive pulmonary disease. Int J Tuberc Lung Dis 2012;16:539-45.
- 32. Oliver BG, Robinson P, Peters M, et al. Viral infections and asthma: An inflammatory interface? Eur Respir J 2014;44:1666-81.
- 33. Zhang H, Zhou P, Wei Y, et al. Histopathologic chan-ges and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020;172:629-32.
- 34. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukar-yotic cells. Infection and Immunity 2005;73:1907-16.
- 35. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress synd-rome. Lancet Respir Med 2020;8:420-2.
- 36. Tian S, Hu W, Niu L, et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumo-nia in two patients with lung cancer. J Thorac Oncol 2020;15:700-4.
- 37. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020;71:762-8.
- 38 .Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 2008;359:2355-65.
- 39. Lapperre TS, Postma DS, Gosman MM, et al. Relation between duration of smoking cessation and bronchial inf-lammation in COPD. Thorax 2006;61:115-21.
- 40. Gamble E, Grootendorst DC, Hattotuwa K, et al. Airway mucosal inflammation in COPD is similar in smo-kers and ex-smokers: A pooled analysis. Eur Respir J 2007;30:467-71.
- 41. Matkovic Z, Miravitlles M. Chronic bronchial infection in COPD. Is there an infective phenotype? Respir Med 2013;107:10-22.
- 42. Simpson JL, Baines KJ, Horvat JC, et al. COPD is characterized by increased detection of Haemophilus influ-enzae, Streptococcus pneumoniae and a deficiency of Bacil-lus species. Respirology 2016;21:697-704.
- 43. McManus TE, Marley AM, Baxter N, et al. High levels of Epstein-Barr virus in COPD. Eur Respir J 2008;31:1221-6.
- 44. Tan DB, Amran FS, Teo TH, et al. Levels of CMV-reactive antibodies correlate with the induction of CD28(null) T cells and systemic inflammation in chronic obstructive pulmonary disease (COPD). Cell Mol Immunol 2016;13:551-3.
- 45. Sethi S, Maloney J, Grove L, et al. Airway inflamma-tion and bronchial bacterial colonization in chronic obstruc-tive pulmonary disease. Am J Respir Crit Care Med 2006; 173:991-8.
- 46. Cabrera-Rubio R, Garcia-Núñez M, Setó L, et al. Mic-robiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol 2012;50:3562-8.
- 47. Pragman AA, Kim HB, Reilly CS, et al. The lung mic-robiome in moderate and severe chronic obstructive pulmo-nary disease. PLoS One 2012;7:e47305.
- 48. Huang YJ, Kim E, Cox MJ, et al. A persistent and diverse airway microbiota present during chronic obstructi-ve pulmonary disease exacerbations. OMICS 2010;14:9-59.
- 49. Bosch AATM, Biesbroek G, Trzcinski K, et al. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 2013;9:e1003057.