Research Article
BibTex RIS Cite
Year 2017, Volume: 1 Issue: 2, 79 - 85, 31.10.2017

Abstract


References

  • Araki, H., Kubo, Y., Mikaduki, A., Jimbo, K., Maw, W.S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A., 2009. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials & Solar Cells, 93: 996-999.
  • Chory, C., Zutz, F., Witt, F., Borchert, H., Parisi, J., 2010. Synthesis and characterization of Cu2ZnSnS4. Phys. Status Solidi C, 7: 1486-1488.
  • Fernandes, P.A., Salomé, P.M.P., Cunha, A.F.da., 2009. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 517: 2519-2523.
  • Fischereder, A., Rath, T., Haas, W., Amenitsch, H., Albering, J., Meischler, D., Larissegger, S., Edler, M., Saf, R., Hofer, F., Trimme, G., 2010. Investigation of Cu2ZnSnS4 Formation from Metal Salts and Thioacetamide. Chemical Materials, 22: 3399-3406.
  • Ito, K. and Nakazawa, T., 1988. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Japanese Journal of Applied Physics, 27: 2094.
  • Jeon, M., Shimizu, T., Shingubara, S., 2011. Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte. Materials Letters, 65: 2364-2367.
  • Kamoun, N., Bouzouita, H., Rezig, B., 2007. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 515: 5949-5952.
  • Kumar, Y.B.K., Bhaskar, P.U, Babu, G.S., Raja, V.S., 2010. Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis. Phys. Status Solidi A, 207: 149-156.
  • Maeda, K., Tanaka, K., Fukui, Y., Uchiki, H., 2011. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Solar Energy Materials & Solar Cells, 95: 2855-2860.
  • Minlin, J., Yong, L., Rabin, D., Prem, T., Michael, M., Joshua, C., Fritz, K., Xingzhong, Y., 2011. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 1: 019501-(1-6).
  • Moholkar, A.V., Shinde, S.S., Babar, A.R., Sim, K.-U., Kwon, Y., Rajpure, K.Y., Patil, P.S., Bhosale, C.H., Kim, J.H., 2011. Development of CZTS thin films solar cells by pulsed laserdeposition: Influence of pulse repetition rate. Solar Energy, 85: 1354-1363.
  • Moritake, N., Fukui, Y., Oonuki, M., Tanaka, K., Uchiki, H., 2009. Preparation of Cu2ZnSnS4 thin film solar cells under non-vacuum condition. Phys. Status Solidi C, 6: 1233-1236.
  • Nakayama, N. and Ito, K., 1996. Sprayed films of stannites Cu2ZnSnS4. Applied Surface Science, 92: 171-175.
  • Pawar, S.M., Pawar, B.S., Moholkar, A.V., Choi, D.S., Yun, J.H., Moon, J.H., Kolekar, S.S., Kim, J.H., 2010. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 55: 4057-4061.
  • Riha, S.C., Fredrick, S.J., Sambur, J.B., Liu, Y., Prieto, A.L., Parkinson, B.A., 2011. Photoelectrochemical Characterization of Nanocrystalline Thin-Film Cu2ZnSnS4 Photocathodes. Applied Materials & Interfaces, 3: 58-66.
  • Sarswat, P.K. and Free, M.L., 2011. Demonstration of a sol–gel synthesized bifacial CZTS photoelectrochemical cell,. Phys. Status Solidi A, 208: 2861-2864.
  • Scragg, J.J., Dale, P.J., Peter, L.M., 2009. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films, 517: 2481-2484.
  • Shin, S.W., Han, J.H., Park, C.Y., Moholkar, A.V., Lee, J.Y., Kim, J.H., 2012. Quaternary Cu2ZnSnS4 nanocrystals: Facile and low cost synthesis by microwave-assisted solution method. Journal of Alloys and Compounds, 516: 96-101.
  • Shinde, N.M., Dubal, D.P., Dhawale, D.S., Lokhande, C.D., Kim, J.H., Moon, J.H., 2012. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 47: 302-307.
  • Sunn, L., He, J., Kong, H., Yue, F., Yang, P., Chu, J., 2011. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method. Solar Energy Materials & Solar Cells, 95: 2907-2913.
  • Tanaka, T., Kawasaki, D., Nishio, M., Guo, Q., Ogawa, H., 2006. Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys. Status Solidi C, 3: 2844-2847.
  • Tanaka, K., Moritake, N., Uchiki, H., 2007. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors. Solar Energy Materials & Solar Cells, 91: 1199-1201.
  • Tanaka, K., Oonuki, M., Moritake, N., Uchiki, H., 2009. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials & Solar Cells, 93: 583-587.
  • Wangperawong, A., King, J.S., Herron, S.M., Tran, B.P., Pangan-Okimoto, K., Bent, S.F., 2011. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 519: 2488-2492.
  • Yakuphanoglu, F., 2011. Nanostructure Cu2ZnSnS4 thin film prepared by sol–gel for optoelectronic applications. Solar Energy, 85: 2518-2523.
  • Yeh, M.Y., Lee, C.C., Wuu, D.S., 2009. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition. J Sol-Gel Sci Technol, 52: 65-68.

The Influence of Layer Number on Properties of Cu2ZnSnS4 Films

Year 2017, Volume: 1 Issue: 2, 79 - 85, 31.10.2017

Abstract

In present study,
Cu2ZnSnS4 thin films were deposited via single-step sol-gel spin coating
process. 
The effect of layer number on
the structural, morphological and optical properties was investigated. XRD
results showed that 7 layered film had crystal structure but other films had
amorphous structure. 7 layered film grown at (112) preferential orientation and
it had another peak of (200). AFM analysis indicated that any particle on
surface of 3, 4 and 5 layered films was not observed and the particle structure
was observed for 6 and 7 layer films. The crystallite sizes for 6 layer films
were very small, but 7 layer films had both small and big particles on its
surface. This particle structure was not homogenous for the film surfaces. From
UV-VIS studies, optical band gap of 3, 4, 5, 6 and 7 layered films were found
to be
   1.88 eV, 1.82 eV, 1.73 eV, 1.68
eV and 1.48 eV, respectively. This result indicates that 7 layered film is very
suitable for solar cell as an absorber layer.

References

  • Araki, H., Kubo, Y., Mikaduki, A., Jimbo, K., Maw, W.S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A., 2009. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials & Solar Cells, 93: 996-999.
  • Chory, C., Zutz, F., Witt, F., Borchert, H., Parisi, J., 2010. Synthesis and characterization of Cu2ZnSnS4. Phys. Status Solidi C, 7: 1486-1488.
  • Fernandes, P.A., Salomé, P.M.P., Cunha, A.F.da., 2009. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 517: 2519-2523.
  • Fischereder, A., Rath, T., Haas, W., Amenitsch, H., Albering, J., Meischler, D., Larissegger, S., Edler, M., Saf, R., Hofer, F., Trimme, G., 2010. Investigation of Cu2ZnSnS4 Formation from Metal Salts and Thioacetamide. Chemical Materials, 22: 3399-3406.
  • Ito, K. and Nakazawa, T., 1988. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Japanese Journal of Applied Physics, 27: 2094.
  • Jeon, M., Shimizu, T., Shingubara, S., 2011. Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte. Materials Letters, 65: 2364-2367.
  • Kamoun, N., Bouzouita, H., Rezig, B., 2007. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 515: 5949-5952.
  • Kumar, Y.B.K., Bhaskar, P.U, Babu, G.S., Raja, V.S., 2010. Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis. Phys. Status Solidi A, 207: 149-156.
  • Maeda, K., Tanaka, K., Fukui, Y., Uchiki, H., 2011. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Solar Energy Materials & Solar Cells, 95: 2855-2860.
  • Minlin, J., Yong, L., Rabin, D., Prem, T., Michael, M., Joshua, C., Fritz, K., Xingzhong, Y., 2011. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 1: 019501-(1-6).
  • Moholkar, A.V., Shinde, S.S., Babar, A.R., Sim, K.-U., Kwon, Y., Rajpure, K.Y., Patil, P.S., Bhosale, C.H., Kim, J.H., 2011. Development of CZTS thin films solar cells by pulsed laserdeposition: Influence of pulse repetition rate. Solar Energy, 85: 1354-1363.
  • Moritake, N., Fukui, Y., Oonuki, M., Tanaka, K., Uchiki, H., 2009. Preparation of Cu2ZnSnS4 thin film solar cells under non-vacuum condition. Phys. Status Solidi C, 6: 1233-1236.
  • Nakayama, N. and Ito, K., 1996. Sprayed films of stannites Cu2ZnSnS4. Applied Surface Science, 92: 171-175.
  • Pawar, S.M., Pawar, B.S., Moholkar, A.V., Choi, D.S., Yun, J.H., Moon, J.H., Kolekar, S.S., Kim, J.H., 2010. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 55: 4057-4061.
  • Riha, S.C., Fredrick, S.J., Sambur, J.B., Liu, Y., Prieto, A.L., Parkinson, B.A., 2011. Photoelectrochemical Characterization of Nanocrystalline Thin-Film Cu2ZnSnS4 Photocathodes. Applied Materials & Interfaces, 3: 58-66.
  • Sarswat, P.K. and Free, M.L., 2011. Demonstration of a sol–gel synthesized bifacial CZTS photoelectrochemical cell,. Phys. Status Solidi A, 208: 2861-2864.
  • Scragg, J.J., Dale, P.J., Peter, L.M., 2009. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films, 517: 2481-2484.
  • Shin, S.W., Han, J.H., Park, C.Y., Moholkar, A.V., Lee, J.Y., Kim, J.H., 2012. Quaternary Cu2ZnSnS4 nanocrystals: Facile and low cost synthesis by microwave-assisted solution method. Journal of Alloys and Compounds, 516: 96-101.
  • Shinde, N.M., Dubal, D.P., Dhawale, D.S., Lokhande, C.D., Kim, J.H., Moon, J.H., 2012. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 47: 302-307.
  • Sunn, L., He, J., Kong, H., Yue, F., Yang, P., Chu, J., 2011. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method. Solar Energy Materials & Solar Cells, 95: 2907-2913.
  • Tanaka, T., Kawasaki, D., Nishio, M., Guo, Q., Ogawa, H., 2006. Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys. Status Solidi C, 3: 2844-2847.
  • Tanaka, K., Moritake, N., Uchiki, H., 2007. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors. Solar Energy Materials & Solar Cells, 91: 1199-1201.
  • Tanaka, K., Oonuki, M., Moritake, N., Uchiki, H., 2009. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials & Solar Cells, 93: 583-587.
  • Wangperawong, A., King, J.S., Herron, S.M., Tran, B.P., Pangan-Okimoto, K., Bent, S.F., 2011. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 519: 2488-2492.
  • Yakuphanoglu, F., 2011. Nanostructure Cu2ZnSnS4 thin film prepared by sol–gel for optoelectronic applications. Solar Energy, 85: 2518-2523.
  • Yeh, M.Y., Lee, C.C., Wuu, D.S., 2009. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition. J Sol-Gel Sci Technol, 52: 65-68.
There are 26 citations in total.

Details

Subjects Environmental Sciences
Journal Section Research Article
Authors

Güven Turgut

Eyüp Fahri Keskenler

Publication Date October 31, 2017
Submission Date September 3, 2017
Published in Issue Year 2017 Volume: 1 Issue: 2

Cite

Vancouver Turgut G, Keskenler EF. The Influence of Layer Number on Properties of Cu2ZnSnS4 Films. TUBİD. 2017;1(2):79-85.