Review
BibTex RIS Cite

SARS-Corona Virüsüne Genel Bakış

Year 2019, Volume: 2 Issue: 1, 32 - 39, 02.05.2019

Abstract



















Sars-Corona Virüsü (SARS-CoV), Mart 2003
yılında ilk kez Çin’de görülen ve şiddetli akut solunum yetmezliğine neden olan
bir koronavirüstür. İnsanlarda enfeksiyonlara neden olan korona virüsler Alfa ve
Beta korona virüs cinsleri içerisinde yer almakta ve özellikle hayvanlardan insanlara bulaşarak, enfekte ettiği
kişilerde
yüksek ateş, öksürük, kas ağrısı, ishal, zor nefes alma şeklinde semptomlara neden olmaktadır.
Virüs özellikle yakın temas sonucunda epidemik salgınlar oluşturabilmektedir. Bu
nedenle
enfeksiyondan korunmak için koruyucu tedbirler büyük önem arz etmektedir.
SARS-CoV insan ve hayvanlarda epitel hücreler, lökositler ve tümör hücreleri gibi
çeşitli dokularda bulunan ve hücre yüzeyinde sergilenen bir adhezyon molekülü olarak
bilinen CEACAM1 (Carcino embryonic antigen-related cell adhesion molecule 1) reseptörlerine
bağlanarak hücreye giriş yapmakta ve akabinde hücre içerisinde S (Spike), E (Zarf)
, M (Membran), N (Nükleokapsid) gibi yapısal proteinleri ve yardımcı proteinleri
aracılığıyla yeni virüs partikülleri oluşturulmaktadır.
Konak hücre içerisinde oluşturulan virüs, ekzositoz yoluyla konakçıdan dışarı salınarak
yeni enfeksiyonlara neden olmaktadır. Virüsün teşhisinde çeşitli immünolojik testler
ve spesifik genleri hedef alarak yapılan PCR çalışmaları büyük önem arz etmektedir.
Son yıllarda SARS-CoV salgınları görülmediğinden tedavi amaçlı spesifik ilaçlar
ve aşılar ile ilgili çalışmalar azalsa da virüs salgınlarının yeniden oluşabileceği
göz önüne alınarak ihmal edilmemesi gerekmektedir.

References

  • 1. Al-Hazmi, A., 2016. Challenges presented by MERS corona virus, and SARS corona virus to global health. Saudi Journal of Biological Sciences, 23(4): 507-511.
  • 2. Anonymous, 2018. International Committee on Taxonomy of VirusesICTV. https://talk.ictvonline.org/taxonomy/. (Erişim tarihi: 14.05.2018).
  • 3. Anonymous, 2018a. Virus Taxonomy: 2017 Release. https://talk.ictvonline.org/taxonomy/ (Erişim tarihi: 14.05.2018).
  • 4. Anonymous, 2018b. Centers of Disease Control and Prevention. https://www.cdc.gov/sars/guidance/core/app1.html (Erişim tarihi: 14.05.2018).
  • 5. Cameron, M.J., Kelvin, A.A., Leon, A.J., Cameron, C.M., Ran, L., Xu, L., Chu, Y.K., Danesh, A., Fang, Y., Li, Q., Anderson, A., Couch, R.C., Paquette, S.G., Fomukong, N.G., Kistner, O., Lauchart, M., Rowe, T., Harrod, K.S., Jonsson, C.B., Kelvin, D.J., 2012. Lack of Innate Interferon Responses during SARS Coronavirus Infection in a Vaccination and Reinfection Ferret Model. plos one, 7(9): e45842.
  • 6. Cheng, V.C.C., Lau, S.K.P., Woo ,P.C.Y.& Yuen, K.Y., 2007. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clınıcal mıcrobıology revıews, 660–694 Vol. 20, No. 4.
  • 7. Chu, C.M., Cheng, V.C., Hung, I.F., Wong, M.M., Chan, K.H., Chan, K.S., Kao, R.Y., Poon, L.L., Wong, C.L., Guan, Y., Peiris, J.S., Yuen, K.Y., 2004. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 59(3): 252-6.
  • 8. Chien, J.Y., Hsueh, P.R., Cheng, W.C., Yu, C.J., Yang, P.C., 2006. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology, 11(6): 715-22.
  • 9. Kanzawa, N., Nishigaki, K., Hayashi, T., Ishii, Y., Furukawa, S., Niiro, A., Yasui, F., Kohara, M., Morita, K., Matsushima, K., Le, M.Q., Masuda, T., Kannagi, M. 2006. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation. FEBS Lett , 580(30): 6807-12.
  • 10. Keng, C.T., Choi, Y.W., Welkers, M.R., Chan, D.Z., Shen, S., Gee, Lim. S., Hong, W., Tan, YJ., 2006. The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology, 354(1): 132–42.
  • 11. Kilianski, A. & Baker, S.C., 2014. Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors. Antiviral research , 101: 105–112.
  • 12. Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P. ,2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. Journal of Virology , 81(2):548–57.
  • 13. Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Palese, P., 2006. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. Journal of Virology, 80(2):785–93.
  • 14. Kuru, T., Asrat, D., 2004. Update on virological, epidemiological and diagnostic aspects of Sars-Corona Virus (SARS-CoV):A newly emerging virüs. Ethiopian Journal of Health Development, 18(1):52-54.
  • 15. Madıgan, M., Martınko, J., Bender, K., Buckley, D., Stahly, D., 2016 Mikroorganizmaların Biyolojisi (Ed: Prof. Dr. Cumhur Çökmüş), Epidemiyoloji, Palme Yayınları, Ankara, s.834.
  • 16. Marra, M.A., Jones, S.J.M., Astell ,C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S.N., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C., Roper, R.L., 2003. The Genome Sequence of the SARS-Associated Coronavirus. Science , Vol. 300, Issue 5624, pp. 1399-1404.
  • 17. McBride, R., & Fielding, B.C., 2012. The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus Accessory Proteins in Virus Pathogenesis. Viruses, 4, 2902-2923.
  • 18. Meier, C., Aricescu, A.R., Assenberg, R., Aplin, R.T., Gilbert, R.J., Grimes, J.M., Stuart, D.I., 2006. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus. Structure, 14(7):1157–65.
  • 19. Narayanan, K., Huang, C. & Makino S., 2008. SARS coronavirus Accessory Proteins. Virus Research, 133(1):113–121.
  • 20. Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M., Tong, S., Tamin, A., Lowe, L., Frace, M., Derisi, J.N., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C.T., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Foucehier, R., Günther, S., Osterhaus, A.D.M.E., Drosten, C., Pallansch, M.A., Anderson, L.J., Bellini, W.J., 2003. Characterization of a Novel Coronavirüs Associated with Severe Acute Respiratory Syndrome. Science, 30;300(5624):1394-9.
  • 21. Schaecher, SR., Mackenzie, JM., Pekosz, A., 2007. The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. Journal of Virology, 81(2):718–31.
  • 22. Stainsby, B., Howitt, S., Porr, j., 2011. Neuromusculoskeletal disorders following SARS: a case series. The journal of the canadian chiropractic association , 55(1).
  • 23. Tan, Y.J., Fielding, B.C., Goh, P.Y., Shen, S., Tan, T.H., Lim, S.G., Hong, W., 2004. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. Journal of Virologly, 78(24):14043–7.
  • 24. Thiel, V., Weber, F., 2008. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor, 19(2): 121-32.
  • 25. Yang, M., Li, C.K., Li, K., Hon, K.L., Ng, M.H., Chan, P.K., Fok, T.F., 2004. Hematological findings in SARS patients and possible mechanisms. International Journal of Molecular Medicine, 14(2): 311-5.
  • 26. Yuan, X., Wu, J., Shan, Y., Yao, Z., Dong, B., Chen, B., Zhao, Z., Wang, S., Chen, J., Cong , Y., 2006. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology, 346(1):74-85.

SARS-Corona Virus Overview

Year 2019, Volume: 2 Issue: 1, 32 - 39, 02.05.2019

Abstract

Sars-Corona Virus (SARS-CoV) is a coronavirus that was first seen in

China in February 2003 and causes severe acute respiratory failure.

Corona viruses that cause infections in humans are found in Alfa and Beta

corona viruses and cause symptoms such as high fever, cough, muscle

aches, diarrhea and difficult breathing in infected people, especially when

infected by animals. The virus can create epidemic outbreaks, especially

as a result of close contact and for this reason, it is of great importance to

take preventive precautions to protect against infectious diseases.

Especially close contact with the virus can lead to epidemic outbreaks,

and protective measures are therefore of great importance to protect

against infections. SARS-CoV enters cells by binding to CEACAM1

(carcino embryonic antigen-related cell adhesion molecule 1) receptors

known as an adhesion molecule displayed in various tissues such as

epithelial cells, leukocytes and tumor cells in humans and animals and

then new virus particles are formed by helper proteins and structural

proteins such as S (Spike), E (Envelope), M (Membrane), N

(Nucleocapsid) in the cell. Virus formed in the host cell is released from

the host via exocytosis, causing new infections. In the diagnosis of the

virus, various immunological tests and PCR studies targeting specific

genes are of great importance. Since SARS-CoV outbreaks have not been

observed in recent years, studies on specific medicines and vaccines for

treatment should not be avoided, even though virus epidemics may recur.

References

  • 1. Al-Hazmi, A., 2016. Challenges presented by MERS corona virus, and SARS corona virus to global health. Saudi Journal of Biological Sciences, 23(4): 507-511.
  • 2. Anonymous, 2018. International Committee on Taxonomy of VirusesICTV. https://talk.ictvonline.org/taxonomy/. (Erişim tarihi: 14.05.2018).
  • 3. Anonymous, 2018a. Virus Taxonomy: 2017 Release. https://talk.ictvonline.org/taxonomy/ (Erişim tarihi: 14.05.2018).
  • 4. Anonymous, 2018b. Centers of Disease Control and Prevention. https://www.cdc.gov/sars/guidance/core/app1.html (Erişim tarihi: 14.05.2018).
  • 5. Cameron, M.J., Kelvin, A.A., Leon, A.J., Cameron, C.M., Ran, L., Xu, L., Chu, Y.K., Danesh, A., Fang, Y., Li, Q., Anderson, A., Couch, R.C., Paquette, S.G., Fomukong, N.G., Kistner, O., Lauchart, M., Rowe, T., Harrod, K.S., Jonsson, C.B., Kelvin, D.J., 2012. Lack of Innate Interferon Responses during SARS Coronavirus Infection in a Vaccination and Reinfection Ferret Model. plos one, 7(9): e45842.
  • 6. Cheng, V.C.C., Lau, S.K.P., Woo ,P.C.Y.& Yuen, K.Y., 2007. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clınıcal mıcrobıology revıews, 660–694 Vol. 20, No. 4.
  • 7. Chu, C.M., Cheng, V.C., Hung, I.F., Wong, M.M., Chan, K.H., Chan, K.S., Kao, R.Y., Poon, L.L., Wong, C.L., Guan, Y., Peiris, J.S., Yuen, K.Y., 2004. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 59(3): 252-6.
  • 8. Chien, J.Y., Hsueh, P.R., Cheng, W.C., Yu, C.J., Yang, P.C., 2006. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology, 11(6): 715-22.
  • 9. Kanzawa, N., Nishigaki, K., Hayashi, T., Ishii, Y., Furukawa, S., Niiro, A., Yasui, F., Kohara, M., Morita, K., Matsushima, K., Le, M.Q., Masuda, T., Kannagi, M. 2006. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation. FEBS Lett , 580(30): 6807-12.
  • 10. Keng, C.T., Choi, Y.W., Welkers, M.R., Chan, D.Z., Shen, S., Gee, Lim. S., Hong, W., Tan, YJ., 2006. The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology, 354(1): 132–42.
  • 11. Kilianski, A. & Baker, S.C., 2014. Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors. Antiviral research , 101: 105–112.
  • 12. Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P. ,2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. Journal of Virology , 81(2):548–57.
  • 13. Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Palese, P., 2006. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. Journal of Virology, 80(2):785–93.
  • 14. Kuru, T., Asrat, D., 2004. Update on virological, epidemiological and diagnostic aspects of Sars-Corona Virus (SARS-CoV):A newly emerging virüs. Ethiopian Journal of Health Development, 18(1):52-54.
  • 15. Madıgan, M., Martınko, J., Bender, K., Buckley, D., Stahly, D., 2016 Mikroorganizmaların Biyolojisi (Ed: Prof. Dr. Cumhur Çökmüş), Epidemiyoloji, Palme Yayınları, Ankara, s.834.
  • 16. Marra, M.A., Jones, S.J.M., Astell ,C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S.N., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C., Roper, R.L., 2003. The Genome Sequence of the SARS-Associated Coronavirus. Science , Vol. 300, Issue 5624, pp. 1399-1404.
  • 17. McBride, R., & Fielding, B.C., 2012. The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus Accessory Proteins in Virus Pathogenesis. Viruses, 4, 2902-2923.
  • 18. Meier, C., Aricescu, A.R., Assenberg, R., Aplin, R.T., Gilbert, R.J., Grimes, J.M., Stuart, D.I., 2006. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus. Structure, 14(7):1157–65.
  • 19. Narayanan, K., Huang, C. & Makino S., 2008. SARS coronavirus Accessory Proteins. Virus Research, 133(1):113–121.
  • 20. Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M., Tong, S., Tamin, A., Lowe, L., Frace, M., Derisi, J.N., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C.T., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Foucehier, R., Günther, S., Osterhaus, A.D.M.E., Drosten, C., Pallansch, M.A., Anderson, L.J., Bellini, W.J., 2003. Characterization of a Novel Coronavirüs Associated with Severe Acute Respiratory Syndrome. Science, 30;300(5624):1394-9.
  • 21. Schaecher, SR., Mackenzie, JM., Pekosz, A., 2007. The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. Journal of Virology, 81(2):718–31.
  • 22. Stainsby, B., Howitt, S., Porr, j., 2011. Neuromusculoskeletal disorders following SARS: a case series. The journal of the canadian chiropractic association , 55(1).
  • 23. Tan, Y.J., Fielding, B.C., Goh, P.Y., Shen, S., Tan, T.H., Lim, S.G., Hong, W., 2004. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. Journal of Virologly, 78(24):14043–7.
  • 24. Thiel, V., Weber, F., 2008. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor, 19(2): 121-32.
  • 25. Yang, M., Li, C.K., Li, K., Hon, K.L., Ng, M.H., Chan, P.K., Fok, T.F., 2004. Hematological findings in SARS patients and possible mechanisms. International Journal of Molecular Medicine, 14(2): 311-5.
  • 26. Yuan, X., Wu, J., Shan, Y., Yao, Z., Dong, B., Chen, B., Zhao, Z., Wang, S., Chen, J., Cong , Y., 2006. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology, 346(1):74-85.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Environmental Sciences
Journal Section Review Article
Authors

Büşra Yücel This is me

Arzu Ala Görmez 0000-0003-3246-1824

Publication Date May 2, 2019
Submission Date May 18, 2018
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

Vancouver Yücel B, Ala Görmez A. SARS-Corona Virüsüne Genel Bakış. TUBID. 2019;2(1):32-9.