Review
BibTex RIS Cite

Yeni nesil kanser terapisinde hedefleme stratejileri ve ligandları

Year 2024, Volume: 5 Issue: 1, 39 - 52, 22.05.2024

Abstract

Kanser günümüzde dünya çapında mortalitesi yüksek bir hastalıktır. Geleneksek kanser tedavi ajanları ve modern immünoterapilerde karşılaşılan yan etkileri ve tümör hedefli olmayan stratejileri kapsamakta olup yeni tedavi yaklaşımları ve ajanlarının keşfi ve kullanımını gerektirmektedir. Nanobilim ve nanoteknoloji son yıllarda sağlık alanında yeni uygulama ve ajanların geliştirilmesi, tanımlanması ve kullanımına olanak sağlamıştır. Nanoteknolojik ürün olarak ortaya konulan terapi ajanları kapsüllenmiş antikanser ajanlarının hedef dışı toksisitesini azaltma, terapötik etkinliği artırma ve tedavi ajanını hücreye ya da organele özgü hedeflemeyi amaçlayan nanotaşıyıcıların geliştirilmesi ve kullanımına yol açmıştır. Bu derlemede, tümör hücresi hedefli antikanser nanoilaçlarının tasarlanmasında mevcut stratejiler ve bununla ilgili gelecek stratejiler ele alınmıştır.

References

  • 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. 2021;71(3):209-49.
  • 2. Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nature reviews Cancer. 2017;17(5):286-301.
  • 3. Vejselova D, Kutlu HM. Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability. Turkish Journal of Biology. 2015;39(1):1-5.
  • 4. Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials. 2019;4(6):398-414.
  • 5. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nature reviews Drug discovery. 2019;18(3):175-96.
  • 6. Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology. 1964;8(5):660-IN10.
  • 7. Folkman J, Long DM. THE USE OF SILICONE RUBBER AS A CARRIER FOR PROLONGED DRUG THERAPY. The Journal of surgical research. 1964;4:139-42.
  • 8. Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature. 1980;288(5791):602-4.
  • 9. Heath TD, Fraley RT, Papahdjopoulos D. Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science (New York, NY). 1980;210(4469):539-41.
  • 10. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research. 1986;46(12 Pt 1):6387-92.
  • 11. Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvascular research. 1986;31(3):288-305.
  • 12. Nicolau C, Alving CR. Demetrios Papahadjopoulos and Liposomes: From Art to Science. Journal of Liposome Research. 1995;5(4):627-34.
  • 13. Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharmaceutical research. 1998;15(2):334-7.
  • 14. Amato I. Nanotechnologists seek biological niches. Cell. 2005;123(6):967-70.
  • 15. Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, et al. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2008;1778(2):423-32.
  • 16. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(27):10980-5.
  • 17. Yokoi K, Kojic M, Milosevic M, Tanei T, Ferrari M, Ziemys A. Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer research. 2014;74(16):4239-46.
  • 18. Burris HA, Patel MR, Cho DC, Clarke JM, Gutierrez M, Zaks TZ, et al. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients withresected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. 2019;37(15_suppl):2523-.
  • 19. Boehnke N, Straehla JP, Safford HC, Kocak M, Rees MG, Ronan M, et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science (New York, NY). 2022;377(6604):eabm5551.
  • 20. Cengiz M, Kutlu HM, Burukoglu DD, Ayhancı A. A comparative study on the therapeutic effects of silymarin and silymarin-loaded solid lipid nanoparticles on D-GaIN/TNF-α-induced liver damage in Balb/c mice. Food Chemical Toxicology. 2015;77:93-100.
  • 21. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nature reviews Cancer. 2017;17(1):20-37.
  • 22. Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nature reviews Materials. 2021;6(4):351-70.
  • 23. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nature reviews Drug discovery. 2021;20(2):101-24.
  • 24. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology. 2007;2(12):751-60.
  • 25. Cengiz M, Ayhanci A, Kutlu HM, Musmul A. Potential therapeutic effects of silymarin and silymarin-loaded solid lipidnanoparticles on experimental kidney damage in BALB/c mice: biochemical and histopathological evaluation. Turkish Journal of Biology. 2016;40(4):807-14.
  • 26. He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures. Accounts of chemical research. 2019;52(9):2445-61.
  • 27. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nature communications. 2018;9(1):1410.
  • 28. Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Advanced drug delivery reviews. 2017;110-111:3-12.
  • 29. Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell. 2020;181(1):151-67.
  • 30. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Advanced drug delivery reviews. 2014;66:2-25.
  • 31. Fang RH, Kroll AV, Gao W, Zhang L. Cell Membrane Coating Nanotechnology. 2018;30(23):1706759.
  • 32. Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther. 2021;6(1):225.
  • 33. Rajendran L, Knölker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nature reviews Drug discovery. 2010;9(1):29-42.
  • 34. Pan L, Liu J, Shi J. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics. Chemical Society reviews. 2018;47(18):6930-46.
  • 35. Poon W, Kingston BR, Ouyang B, Ngo W, Chan WCW. A framework for designing delivery systems. Nature nanotechnology. 2020;15(10):819-29.
  • 36. Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. Drug Design, Development and Therapy. 2013;7(null):585-99.
  • 37. Li L, Sun W, Zhong J, Yang Q, Zhu X, Zhou Z, et al. Multistage Nanovehicle Delivery System Based on Stepwise Size Reduction and Charge Reversal for Programmed Nuclear Targeting of Systemically Administered Anticancer Drugs. 2015;25(26):4101-13.
  • 38. Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. 2022;18(6):2104632.
  • 39. Fahey JL. Antibodies and immunoglobulins. I. Structure and function. Jama. 1965;194(1):71-4.
  • 40. Huber R, Deisenhofer J, Colman PM, Matsushima M, Palm W. Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature. 1976;264(5585):415-20.
  • 41. Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chemical science. 2017;8(1):63-77.42. Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ. Recent Advances in the Generation of Antibody–Nanomaterial Conjugates. 2018;7(1):1700607.
  • 43. Yokoyama WM, Christensen M, Santos GD, Miller D, Ho J, Wu T, et al. Production of Monoclonal Antibodies. 2013;102(1):2.5.1-2.5.29.
  • 44. van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. The Lancet Oncology. 2017;18(10):1386-96.
  • 45. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science (New York, NY). 2012;338(6109):903-10.
  • 46. Santos EDS, Nogueira KAB, Fernandes LCC, Martins JRP, Reis AVF, Neto JBV, et al. EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. International journal of pharmaceutics. 2021;592:120082.
  • 47. Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30(29):5737-50.
  • 48. Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug discovery today. 2021;26(5):1319-29.
  • 49. Nagamitsu A, Greish K, Maeda H. Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Japanese journal of clinical oncology. 2009;39(11):756-66.
  • 50. Ngamcherdtrakul W, Morry J, Gu S, Castro DJ, Goodyear SM, Sangvanich T, et al. Cationic Polymer Modified Mesoporous Silica Nanoparticles for Targeted SiRNA Delivery to HER2+ Breast Cancer. Advanced functional materials. 2015;25(18):2646-59.
  • 51. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clinical cancer research : an official journal of the American Association for Cancer Research. 1997;3(1):81-5.
  • 52. Czerwińska M, Fracasso G, Pruszyński M, Bilewicz A, Kruszewski M, Majkowska-Pilip A, Lankoff A. Design and Evaluation of (223)Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part I. Materials (Basel, Switzerland). 2020;13(17).
  • 53. Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. Journal of controlled release : official journal of the Controlled Release Society. 2020;320:180-200.
  • 54. Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, et al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. The Lancet Oncology. 2012;13(12):1234-41.
  • 55. Munster P, Krop IE, LoRusso P, Ma C, Siegel BA, Shields AF, et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br J Cancer. 2018;119(9):1086-93.
  • 56. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Molecular therapy : the journal of the American Society of Gene Therapy. 2013;21(5):1096-103.
  • 57. Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer research. 2003;63(12):3154-61.
  • 58. Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer research. 2005;65(24):11631-8.
  • 59. Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, et al. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chemical reviews. 2021;121(19):12035-105.
  • 60. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nature reviews Drug discovery. 2017;16(3):181-202.
  • 61. Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology. Nature Reviews Chemistry. 2017;1(10):0076.62. Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Advanced drug delivery reviews. 2018;134:122-37.
  • 63. Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer research. 2002;62(14):4029-33.
  • 64. Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: A critical review. Biochimica et biophysica acta Reviews on cancer. 2020;1874(2):188436.
  • 65. Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer metastasis reviews. 2020;39(3):969-87.
  • 66. Yahyazadeh Mashhadi SM, Kazemimanesh M, Arashkia A, Azadmanesh K, Meshkat Z, Golichenari B, Sahebkar A. Shedding light on the EpCAM: An overview. Journal of cellular physiology. 2019;234(8):12569-80.
  • 67. Chang M, Yang CS, Huang DM. Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS nano. 2011;5(8):6156-63.
  • 68. Kawabata H. Transferrin and transferrin receptors update. Free radical biology & medicine. 2019;133:46-54.
  • 69. Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(3):1235-40.
  • 70. Senzer NN, Matsuno K, Yamagata N, Fujisawa T, Wasserman E, Sutherland W, et al. Abstract C36: MBP‐426, a novel liposome‐encapsulated oxaliplatin, in combination with 5‐FU/leucovorin (LV): Phase I results of a Phase I/II study in gastro‐esophageal adenocarcinoma, with pharmacokinetics. Molecular Cancer Therapeutics. 2009;8(12_Supplement):C36-C.
  • 71. Sandoval MA, Sloat BR, Lansakara PD, Kumar A, Rodriguez BL, Kiguchi K, et al. EGFR-targeted stearoyl gemcitabine nanoparticles show enhanced anti-tumor activity. Journal of controlled release : official journal of the Controlled Release Society. 2012;157(2):287-96.
  • 72. Mitchell MJ, Chen CS, Ponmudi V, Hughes AD, King MR. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. Journal of controlled release : official journal of the Controlled Release Society. 2012;160(3):609-17.
  • 73. Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M. Peptide-based targeted therapeutics: Focus on cancer treatment. Journal of controlled release : official journal of the Controlled Release Society. 2018;292:141-62.
  • 74. Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Molecular pharmaceutics. 2012;9(11):2961-73.
  • 75. Temming K, Schiffelers RM, Molema G, Kok RJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2005;8(6):381-402.
  • 76. Mao J, Ran D, Xie C, Shen Q, Wang S, Lu W. EGFR/EGFRvIII Dual-Targeting Peptide-Mediated Drug Delivery for Enhanced Glioma Therapy. ACS applied materials & interfaces. 2017;9(29):24462-75.
  • 77. Aftimos PG, Milojkovic-Kerklaan B, Diéras V, Altintas S, Anders C, Arnedos M, et al. Abstract P6-16-04: Phase 1/2a study of glutathione PEGylated liposomal doxorubicin (2B3-101) in breast cancer patients with brain metastases. Cancer research. 2015;75(9_Supplement):P6-16-04-P6-16-04.
  • 78. Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics. 2021;13(3).
  • 79. Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS nano. 2015;9(2):1161-74.
  • 80. Guo X, Shi C, Wang J, Di S, Zhou S. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials. 2013;34(18):4544-54.81. Patil Y, Sadhukha T, Ma L, Panyam J. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. Journal of controlled release : official journal of the Controlled Release Society. 2009;136(1):21-9.
  • 82. Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, et al. MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. The Journal of biological chemistry. 2003;278(6):4127-34.
  • 83. Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano letters. 2014;14(4):2181-8.
  • 84. Zhu JY, Zheng DW, Zhang MK, Yu WY, Qiu WX, Hu JJ, et al. Preferential Cancer Cell Self-Recognition and Tumor Self-Targeting by Coating Nanoparticles with Homotypic Cancer Cell Membranes. Nano letters. 2016;16(9):5895-901.
  • 85. Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, et al. Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors. Advanced materials (Deerfield Beach, Fla). 2016;28(43):9581-8.
  • 86. De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nature cell biology. 2019;21(7):801-11.
  • 87. Cheng S, Nethi SK, Rathi S, Layek B, Prabha S. Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. The Journal of pharmacology and experimental therapeutics. 2019;370(2):231-41.
  • 88. Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, et al. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomaterials science. 2021;9(4):1088-103.
  • 89. Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem Cell Membrane-Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. Small (Weinheim an der Bergstrasse, Germany). 2016;12(30):4056-62.
  • 90. Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta biomaterialia. 2020;112:1-13.
  • 91. Bu L-L, Rao L, Yu G-T, Chen L, Deng W-W, Liu J-F, et al. Cancer Stem Cell-Platelet Hybrid Membrane-Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. 2019;29(10):1807733.
  • 92. Wang D, Liu C, You S, Zhang K, Li M, Cao Y, et al. Bacterial Vesicle-Cancer Cell Hybrid Membrane-Coated Nanoparticles for Tumor Specific Immune Activation and Photothermal Therapy. ACS applied materials & interfaces. 2020;12(37):41138-47.
  • 93. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced drug delivery reviews. 2015;91:3-6.
  • 94. Xu W, Yang S, Lu L, Xu Q, Wu S, Zhou J, et al. Influence of lung cancer model characteristics on tumor targeting behavior of nanodrugs. Journal of Controlled Release. 2023;354:538-53.
  • 95. Saminathan A, Zajac M, Anees P, Krishnan Y. Organelle-level precision with next-generation targeting technologies. Nature Reviews Materials. 2022;7(5):355-71.
  • 96. Cupic KI, Rennick JJ, Johnston AP, Such GK. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. Nanomedicine (London, England). 2019;14(2):215-23.
Year 2024, Volume: 5 Issue: 1, 39 - 52, 22.05.2024

Abstract

References

  • 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. 2021;71(3):209-49.
  • 2. Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nature reviews Cancer. 2017;17(5):286-301.
  • 3. Vejselova D, Kutlu HM. Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability. Turkish Journal of Biology. 2015;39(1):1-5.
  • 4. Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials. 2019;4(6):398-414.
  • 5. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nature reviews Drug discovery. 2019;18(3):175-96.
  • 6. Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology. 1964;8(5):660-IN10.
  • 7. Folkman J, Long DM. THE USE OF SILICONE RUBBER AS A CARRIER FOR PROLONGED DRUG THERAPY. The Journal of surgical research. 1964;4:139-42.
  • 8. Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature. 1980;288(5791):602-4.
  • 9. Heath TD, Fraley RT, Papahdjopoulos D. Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science (New York, NY). 1980;210(4469):539-41.
  • 10. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research. 1986;46(12 Pt 1):6387-92.
  • 11. Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvascular research. 1986;31(3):288-305.
  • 12. Nicolau C, Alving CR. Demetrios Papahadjopoulos and Liposomes: From Art to Science. Journal of Liposome Research. 1995;5(4):627-34.
  • 13. Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharmaceutical research. 1998;15(2):334-7.
  • 14. Amato I. Nanotechnologists seek biological niches. Cell. 2005;123(6):967-70.
  • 15. Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, et al. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2008;1778(2):423-32.
  • 16. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(27):10980-5.
  • 17. Yokoi K, Kojic M, Milosevic M, Tanei T, Ferrari M, Ziemys A. Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer research. 2014;74(16):4239-46.
  • 18. Burris HA, Patel MR, Cho DC, Clarke JM, Gutierrez M, Zaks TZ, et al. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients withresected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. 2019;37(15_suppl):2523-.
  • 19. Boehnke N, Straehla JP, Safford HC, Kocak M, Rees MG, Ronan M, et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science (New York, NY). 2022;377(6604):eabm5551.
  • 20. Cengiz M, Kutlu HM, Burukoglu DD, Ayhancı A. A comparative study on the therapeutic effects of silymarin and silymarin-loaded solid lipid nanoparticles on D-GaIN/TNF-α-induced liver damage in Balb/c mice. Food Chemical Toxicology. 2015;77:93-100.
  • 21. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nature reviews Cancer. 2017;17(1):20-37.
  • 22. Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nature reviews Materials. 2021;6(4):351-70.
  • 23. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nature reviews Drug discovery. 2021;20(2):101-24.
  • 24. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology. 2007;2(12):751-60.
  • 25. Cengiz M, Ayhanci A, Kutlu HM, Musmul A. Potential therapeutic effects of silymarin and silymarin-loaded solid lipidnanoparticles on experimental kidney damage in BALB/c mice: biochemical and histopathological evaluation. Turkish Journal of Biology. 2016;40(4):807-14.
  • 26. He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures. Accounts of chemical research. 2019;52(9):2445-61.
  • 27. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nature communications. 2018;9(1):1410.
  • 28. Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Advanced drug delivery reviews. 2017;110-111:3-12.
  • 29. Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell. 2020;181(1):151-67.
  • 30. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Advanced drug delivery reviews. 2014;66:2-25.
  • 31. Fang RH, Kroll AV, Gao W, Zhang L. Cell Membrane Coating Nanotechnology. 2018;30(23):1706759.
  • 32. Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther. 2021;6(1):225.
  • 33. Rajendran L, Knölker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nature reviews Drug discovery. 2010;9(1):29-42.
  • 34. Pan L, Liu J, Shi J. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics. Chemical Society reviews. 2018;47(18):6930-46.
  • 35. Poon W, Kingston BR, Ouyang B, Ngo W, Chan WCW. A framework for designing delivery systems. Nature nanotechnology. 2020;15(10):819-29.
  • 36. Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. Drug Design, Development and Therapy. 2013;7(null):585-99.
  • 37. Li L, Sun W, Zhong J, Yang Q, Zhu X, Zhou Z, et al. Multistage Nanovehicle Delivery System Based on Stepwise Size Reduction and Charge Reversal for Programmed Nuclear Targeting of Systemically Administered Anticancer Drugs. 2015;25(26):4101-13.
  • 38. Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. 2022;18(6):2104632.
  • 39. Fahey JL. Antibodies and immunoglobulins. I. Structure and function. Jama. 1965;194(1):71-4.
  • 40. Huber R, Deisenhofer J, Colman PM, Matsushima M, Palm W. Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature. 1976;264(5585):415-20.
  • 41. Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chemical science. 2017;8(1):63-77.42. Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ. Recent Advances in the Generation of Antibody–Nanomaterial Conjugates. 2018;7(1):1700607.
  • 43. Yokoyama WM, Christensen M, Santos GD, Miller D, Ho J, Wu T, et al. Production of Monoclonal Antibodies. 2013;102(1):2.5.1-2.5.29.
  • 44. van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. The Lancet Oncology. 2017;18(10):1386-96.
  • 45. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science (New York, NY). 2012;338(6109):903-10.
  • 46. Santos EDS, Nogueira KAB, Fernandes LCC, Martins JRP, Reis AVF, Neto JBV, et al. EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. International journal of pharmaceutics. 2021;592:120082.
  • 47. Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30(29):5737-50.
  • 48. Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug discovery today. 2021;26(5):1319-29.
  • 49. Nagamitsu A, Greish K, Maeda H. Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Japanese journal of clinical oncology. 2009;39(11):756-66.
  • 50. Ngamcherdtrakul W, Morry J, Gu S, Castro DJ, Goodyear SM, Sangvanich T, et al. Cationic Polymer Modified Mesoporous Silica Nanoparticles for Targeted SiRNA Delivery to HER2+ Breast Cancer. Advanced functional materials. 2015;25(18):2646-59.
  • 51. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clinical cancer research : an official journal of the American Association for Cancer Research. 1997;3(1):81-5.
  • 52. Czerwińska M, Fracasso G, Pruszyński M, Bilewicz A, Kruszewski M, Majkowska-Pilip A, Lankoff A. Design and Evaluation of (223)Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part I. Materials (Basel, Switzerland). 2020;13(17).
  • 53. Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. Journal of controlled release : official journal of the Controlled Release Society. 2020;320:180-200.
  • 54. Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, et al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. The Lancet Oncology. 2012;13(12):1234-41.
  • 55. Munster P, Krop IE, LoRusso P, Ma C, Siegel BA, Shields AF, et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br J Cancer. 2018;119(9):1086-93.
  • 56. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Molecular therapy : the journal of the American Society of Gene Therapy. 2013;21(5):1096-103.
  • 57. Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer research. 2003;63(12):3154-61.
  • 58. Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer research. 2005;65(24):11631-8.
  • 59. Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, et al. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chemical reviews. 2021;121(19):12035-105.
  • 60. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nature reviews Drug discovery. 2017;16(3):181-202.
  • 61. Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology. Nature Reviews Chemistry. 2017;1(10):0076.62. Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Advanced drug delivery reviews. 2018;134:122-37.
  • 63. Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer research. 2002;62(14):4029-33.
  • 64. Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: A critical review. Biochimica et biophysica acta Reviews on cancer. 2020;1874(2):188436.
  • 65. Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer metastasis reviews. 2020;39(3):969-87.
  • 66. Yahyazadeh Mashhadi SM, Kazemimanesh M, Arashkia A, Azadmanesh K, Meshkat Z, Golichenari B, Sahebkar A. Shedding light on the EpCAM: An overview. Journal of cellular physiology. 2019;234(8):12569-80.
  • 67. Chang M, Yang CS, Huang DM. Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS nano. 2011;5(8):6156-63.
  • 68. Kawabata H. Transferrin and transferrin receptors update. Free radical biology & medicine. 2019;133:46-54.
  • 69. Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(3):1235-40.
  • 70. Senzer NN, Matsuno K, Yamagata N, Fujisawa T, Wasserman E, Sutherland W, et al. Abstract C36: MBP‐426, a novel liposome‐encapsulated oxaliplatin, in combination with 5‐FU/leucovorin (LV): Phase I results of a Phase I/II study in gastro‐esophageal adenocarcinoma, with pharmacokinetics. Molecular Cancer Therapeutics. 2009;8(12_Supplement):C36-C.
  • 71. Sandoval MA, Sloat BR, Lansakara PD, Kumar A, Rodriguez BL, Kiguchi K, et al. EGFR-targeted stearoyl gemcitabine nanoparticles show enhanced anti-tumor activity. Journal of controlled release : official journal of the Controlled Release Society. 2012;157(2):287-96.
  • 72. Mitchell MJ, Chen CS, Ponmudi V, Hughes AD, King MR. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. Journal of controlled release : official journal of the Controlled Release Society. 2012;160(3):609-17.
  • 73. Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M. Peptide-based targeted therapeutics: Focus on cancer treatment. Journal of controlled release : official journal of the Controlled Release Society. 2018;292:141-62.
  • 74. Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Molecular pharmaceutics. 2012;9(11):2961-73.
  • 75. Temming K, Schiffelers RM, Molema G, Kok RJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2005;8(6):381-402.
  • 76. Mao J, Ran D, Xie C, Shen Q, Wang S, Lu W. EGFR/EGFRvIII Dual-Targeting Peptide-Mediated Drug Delivery for Enhanced Glioma Therapy. ACS applied materials & interfaces. 2017;9(29):24462-75.
  • 77. Aftimos PG, Milojkovic-Kerklaan B, Diéras V, Altintas S, Anders C, Arnedos M, et al. Abstract P6-16-04: Phase 1/2a study of glutathione PEGylated liposomal doxorubicin (2B3-101) in breast cancer patients with brain metastases. Cancer research. 2015;75(9_Supplement):P6-16-04-P6-16-04.
  • 78. Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics. 2021;13(3).
  • 79. Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS nano. 2015;9(2):1161-74.
  • 80. Guo X, Shi C, Wang J, Di S, Zhou S. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials. 2013;34(18):4544-54.81. Patil Y, Sadhukha T, Ma L, Panyam J. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. Journal of controlled release : official journal of the Controlled Release Society. 2009;136(1):21-9.
  • 82. Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, et al. MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. The Journal of biological chemistry. 2003;278(6):4127-34.
  • 83. Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano letters. 2014;14(4):2181-8.
  • 84. Zhu JY, Zheng DW, Zhang MK, Yu WY, Qiu WX, Hu JJ, et al. Preferential Cancer Cell Self-Recognition and Tumor Self-Targeting by Coating Nanoparticles with Homotypic Cancer Cell Membranes. Nano letters. 2016;16(9):5895-901.
  • 85. Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, et al. Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors. Advanced materials (Deerfield Beach, Fla). 2016;28(43):9581-8.
  • 86. De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nature cell biology. 2019;21(7):801-11.
  • 87. Cheng S, Nethi SK, Rathi S, Layek B, Prabha S. Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. The Journal of pharmacology and experimental therapeutics. 2019;370(2):231-41.
  • 88. Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, et al. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomaterials science. 2021;9(4):1088-103.
  • 89. Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem Cell Membrane-Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. Small (Weinheim an der Bergstrasse, Germany). 2016;12(30):4056-62.
  • 90. Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta biomaterialia. 2020;112:1-13.
  • 91. Bu L-L, Rao L, Yu G-T, Chen L, Deng W-W, Liu J-F, et al. Cancer Stem Cell-Platelet Hybrid Membrane-Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. 2019;29(10):1807733.
  • 92. Wang D, Liu C, You S, Zhang K, Li M, Cao Y, et al. Bacterial Vesicle-Cancer Cell Hybrid Membrane-Coated Nanoparticles for Tumor Specific Immune Activation and Photothermal Therapy. ACS applied materials & interfaces. 2020;12(37):41138-47.
  • 93. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced drug delivery reviews. 2015;91:3-6.
  • 94. Xu W, Yang S, Lu L, Xu Q, Wu S, Zhou J, et al. Influence of lung cancer model characteristics on tumor targeting behavior of nanodrugs. Journal of Controlled Release. 2023;354:538-53.
  • 95. Saminathan A, Zajac M, Anees P, Krishnan Y. Organelle-level precision with next-generation targeting technologies. Nature Reviews Materials. 2022;7(5):355-71.
  • 96. Cupic KI, Rennick JJ, Johnston AP, Such GK. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. Nanomedicine (London, England). 2019;14(2):215-23.
There are 93 citations in total.

Details

Primary Language Turkish
Subjects Animal Cell and Molecular Biology
Journal Section Review Article
Authors

Mustafa Cengiz 0000-0002-6925-8371

Canan Vejselova Sezer 0000-0002-3792-5993

Publication Date May 22, 2024
Submission Date April 15, 2024
Acceptance Date April 30, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

Vancouver Cengiz M, Vejselova Sezer C. Yeni nesil kanser terapisinde hedefleme stratejileri ve ligandları. TUBID. 2024;5(1):39-52.