Review
BibTex RIS Cite

COVID-19 Pandemisi ve Diabetes Mellitus

Year 2020, Volume: 4 Issue: 2, 130 - 137, 30.08.2020
https://doi.org/10.25048/tudod.746139

Abstract

Coronavirüs ailesinden SARS-CoV-2’nin neden olduğu COVID-19 pandemisi, ilk olarak Çin’de görülen ve bulaşıcılık özelliği yüksek bir hastalıktır. Hastalığın mortalite ve morbiditesinde diyabet başta olmak üzere komorbid hastalıkların varlığı ve ileri yaş belirleyici olmaktadır. COVID-19 tarafından tetiklenen hücresel mekanizmalar ve diyabet patofizyolojisi, diyabetli bireyleri potansiyel organ hasarı ile sonuçlanacak bir sitokin fırtınasına daha duyarlı hale getirmektedir. COVID-19 ile infekte olmuş diyabetik hastalarda hastaneye başvuru, yatış oranları, şiddetli pnömoni gelişimi ve diğer komorbit hastalıklara göre daha yüksek mortalite oranlarının olduğu gösterilmiştir. Bu risk, iyi glisemik kontrol ile tamamen ortadan kaldırılmasa da azaltılabilmektedir. Diyabetli hastalarda hem glisemik regülasyon hem de eşlik eden kalp hastalığı, hipertansiyon, obezite veya böbrek hastalığı gibi komorbid durumların stabilizasyonu sağlanmalıdır.

References

  • 1. World Health Organization Coronavirus (COVID-19) Situtiation Report -114. 13 May 2020, https://apps.who.int/ iris/handle/10665/332089. Erişim tarihi:25.05.2020.
  • 2. Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. J Diabetes Complications. 2020;107637
  • 3. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.
  • 4. Satman I, Omer B, Tutuncu Y, et al. Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur J Epidemiol. 2013;28(2):169‐180.
  • 5. Maddaloni E, Buzzetti R. Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes Metab Res Rev. 2020;e33213321.
  • 6. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;e3319.
  • 7. Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Res Care. 2020;8(1):e001343.
  • 8. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708‐1720.
  • 9. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;10.1001/jama.2020.2648. doi:10.1001/jama.2020.2648.
  • 10. T.C. Saglık Bakanlığı, Halk Sağlığı Genel Müdürlüğü COVID-19 (SARS-CoV-2 infeksiyonu) Rehberi, Bilim Kurulu Çalışması. 14 Nisan 2020, Ankara.
  • 11. Katulanda P, Dissanayake HA, Ranathunga I, et al. Prevention and management of COVID-19 among patients with diabetes: an appraisal of the literature. Diabetologia. 2020;1‐13.
  • 12. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142.
  • 13. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574‐1581.
  • 14. Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A metaanalysis. Diabetes Metab Syndr. 2020;14(4):535‐545.
  • 15. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARSCoV-2. J Endocrinol Invest. 2020;43(6):867‐869
  • 16. Kornum JB, Thomsen RW, Riis A, Lervang HH, Schonheyder HC, Sorensen HT. Type 2 diabetes and pneumonia outcomes: a population-based cohort study. Diabetes Care 2007;30(9):2251–2257.
  • 17. COVID-19 Pandemi diyabet izlem ve tedavi kriterleri uzlaşı raporu. Türk Diyabet Vakfı, Mayıs 2020.
  • 18. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract 2020;162:108132.
  • 19. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2009;47(3):193–199.
  • 20. Drucker DJ. Coronavirus Infections and Type 2 DiabetesShared Pathways with Therapeutic Implications. Endocr Rev. 2020;41(3):bnaa011.
  • 21. Hill MA, Mantzoros C, Sowers JR. Commentary: COVID-19 in patients with diabetes. Metabolism. 2020;107:154217.
  • 22. Meo SA, Alhowikan AM,Al-Khlaiwi T,Meo IM,Halepoto DM, Iqbal M, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24(4):2012–9.
  • 23. Yang JK1, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006;23(6):623e8.
  • 24. Schoen K, Horvat N, Guerreiro NFC, de Castro I, de Giassi KS. Spectrum of clinical and radiographic findings in patients with diagnosis of H1N1 and correlation with clinical severity. BMC Infect Dis. 2019;19(1):964.
  • 25. Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1):59.
  • 26. Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020;21(6):e13034.
  • 27. Kaye SM, Pietiläinen KH, Kotronen A, Joutsi-Korhonen L, Kaprio J, Yki-Järvinen H,et al. Obesity-related derangements of coagulation and fibrinolysis: a study of obesity- discordant monozygotic twin pairs. Obesity 2012;20:88-94.
  • 28. Cariou, B., Hadjadj, S., Wargny, M. et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia (2020). https://doi.org/10.1007/s00125-020-05180-x
  • 29. Mukhtar S, Mukhtar S. Mental health and psychological distress in people with diabetes during COVID-19. Metabolism 2020;108:154248.
  • 30. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr. 2020;14(3):241‐246.
  • 31. Cansu DU, Korkmaz C. Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for RA. Rheumatology (Oxford) 2008;47(3):378–379.
  • 32. Amin S, Lux A, O’Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol 2019;85:37-46.
  • 33. Plattner F, Bibb JA. Serine and threonine phosphorylation. Basic Neurochem 2012:467-492
  • 34. Carboni E, Carta AR, Carboni E. Can pioglitazone be potentially useful therapeutically. in treating patients with COVID-19? Med Hypotheses 2020;140:109776.
  • 35. Gorricho J, Garj_on J, Alonso A, Celaya MC, et al. Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case-control study. Br J Clin Pharmacol 2017;83(9):2034-44.
  • 36. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirusEMC. Nature 2013;495:251–254
  • 37. Reinhold D, Biton A, Goihl A, et al. Dual inhibition of dipeptidyl petidase IV and aminopeptidase N suppresses inflammatory immune responses. Ann N Y Acad Sci. 2007;1110:402-9.
  • 38. Bloomgarden ZT. Diabetes and COVID-19.Diabetes 2020:347- 348
  • 39. Iacobellis G. COVID-19 and diabetes: Can DPP4 inhibition play a role?. Diabetes Res Clin Pract. 2020;162:108125.
  • 40. Bloodworth MH, Rusznak M, Pfister CC, et al. Glucagon-like peptide 1 receptor signaling attenuates respiratory syncytial virus-induced type 2 responses and immunopathology. J Allergy Clin Immunol. 2018;142(2):683‐687.e12.
  • 41. Toki S, Goleniewska K, Reiss S, et al. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol. 2018;142(5):1515‐1528.e8.
  • 42. Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546‐550.
  • 43. Gajjar K, Luthra P. Euglycemic Diabetic Ketoacidosis in the Setting of SGLT2 Inhibitor Use and Hypertriglyceridemia: A Case Report and Review of Literature. Cureus. 2019;11(4):e4384.
  • 44. Henry C, Zaizafoun M, Stock E, et al. Impact of angiotensinconverting enzyme inhibitors and statins on viral pneumonia. Proc (Bayl Univ Med Cent). 2018 Oct 26;31(4):419-423.
  • 45. Kar P, Jones KL, Horowitz M, et al. Management of critically ill patients with type 2 diabetes: The need for personalised therapy. World J Diabetes. 2015;6(5):693-706.
  • 46. Wang W, Lu J, Gu W, et al. Care for diabetes with COVID-19: Advice from China. J Diabetes. 2020;12(5):417-419.
  • 47. Gupta R, Ghosh A, Singh AK, MisraA. Clinical considerations for diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr. 2020;14(3):211-212.
  • 48. Deng SQ, Peng HJ. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J. Clin. Med. 2020, 9, 575
  • 49. Bode B, Garrett V, Messler J, et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. J Diabetes Sci Technol. 2020;1932296820924469.
  • 50. Peric S, Stulnig TM. Diabetes and COVID-19: DiseaseManagement-People. Wien Klin Wochenschr. 2020;1‐6.
  • 51. Chee YJ, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020;164:108166.
  • 52. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab. 2020;10.1111/dom.14057. doi:10.1111/dom.14057
  • 53. Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16(6):297‐298.
Year 2020, Volume: 4 Issue: 2, 130 - 137, 30.08.2020
https://doi.org/10.25048/tudod.746139

Abstract

The COVID-19 pandemic, caused by SARS-CoV-2 of Coronaviruses types, is a highly infectious disease caused by SARS-CoV-2, which first appeared in China. The presence of comorbid diseases, especially diabetes, and advanced age are determinant for the mortality and morbidity of the disease. Considering the cellular mechanisms triggered by COVID-19 and the pathophysiology of diabetes, make individuals with diabetes more susceptible to a cytokine storm with potential organ damage. Studies have reported that individuals with diabetes and who have been infected by COVID-19 showed higher admission rates to hospitals, development of severe pneumonia as well as higher mortality rates, when compared to those without comorbidities. This risk can be reduced, though not completely eliminated, by good glycemic control. In patients with diabetes, both glycemic regulation and stabilization of comorbid conditions such as concomitant heart disease, hypertension, obesity or kidney disease should be provided.
Key Words: Pandemic, Coronavirus, SARS-CoV-2, COVID-19, Diabetes mellitus

References

  • 1. World Health Organization Coronavirus (COVID-19) Situtiation Report -114. 13 May 2020, https://apps.who.int/ iris/handle/10665/332089. Erişim tarihi:25.05.2020.
  • 2. Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. J Diabetes Complications. 2020;107637
  • 3. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.
  • 4. Satman I, Omer B, Tutuncu Y, et al. Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur J Epidemiol. 2013;28(2):169‐180.
  • 5. Maddaloni E, Buzzetti R. Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes Metab Res Rev. 2020;e33213321.
  • 6. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;e3319.
  • 7. Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Res Care. 2020;8(1):e001343.
  • 8. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708‐1720.
  • 9. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;10.1001/jama.2020.2648. doi:10.1001/jama.2020.2648.
  • 10. T.C. Saglık Bakanlığı, Halk Sağlığı Genel Müdürlüğü COVID-19 (SARS-CoV-2 infeksiyonu) Rehberi, Bilim Kurulu Çalışması. 14 Nisan 2020, Ankara.
  • 11. Katulanda P, Dissanayake HA, Ranathunga I, et al. Prevention and management of COVID-19 among patients with diabetes: an appraisal of the literature. Diabetologia. 2020;1‐13.
  • 12. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142.
  • 13. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574‐1581.
  • 14. Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A metaanalysis. Diabetes Metab Syndr. 2020;14(4):535‐545.
  • 15. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARSCoV-2. J Endocrinol Invest. 2020;43(6):867‐869
  • 16. Kornum JB, Thomsen RW, Riis A, Lervang HH, Schonheyder HC, Sorensen HT. Type 2 diabetes and pneumonia outcomes: a population-based cohort study. Diabetes Care 2007;30(9):2251–2257.
  • 17. COVID-19 Pandemi diyabet izlem ve tedavi kriterleri uzlaşı raporu. Türk Diyabet Vakfı, Mayıs 2020.
  • 18. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract 2020;162:108132.
  • 19. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2009;47(3):193–199.
  • 20. Drucker DJ. Coronavirus Infections and Type 2 DiabetesShared Pathways with Therapeutic Implications. Endocr Rev. 2020;41(3):bnaa011.
  • 21. Hill MA, Mantzoros C, Sowers JR. Commentary: COVID-19 in patients with diabetes. Metabolism. 2020;107:154217.
  • 22. Meo SA, Alhowikan AM,Al-Khlaiwi T,Meo IM,Halepoto DM, Iqbal M, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24(4):2012–9.
  • 23. Yang JK1, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006;23(6):623e8.
  • 24. Schoen K, Horvat N, Guerreiro NFC, de Castro I, de Giassi KS. Spectrum of clinical and radiographic findings in patients with diagnosis of H1N1 and correlation with clinical severity. BMC Infect Dis. 2019;19(1):964.
  • 25. Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1):59.
  • 26. Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020;21(6):e13034.
  • 27. Kaye SM, Pietiläinen KH, Kotronen A, Joutsi-Korhonen L, Kaprio J, Yki-Järvinen H,et al. Obesity-related derangements of coagulation and fibrinolysis: a study of obesity- discordant monozygotic twin pairs. Obesity 2012;20:88-94.
  • 28. Cariou, B., Hadjadj, S., Wargny, M. et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia (2020). https://doi.org/10.1007/s00125-020-05180-x
  • 29. Mukhtar S, Mukhtar S. Mental health and psychological distress in people with diabetes during COVID-19. Metabolism 2020;108:154248.
  • 30. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr. 2020;14(3):241‐246.
  • 31. Cansu DU, Korkmaz C. Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for RA. Rheumatology (Oxford) 2008;47(3):378–379.
  • 32. Amin S, Lux A, O’Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol 2019;85:37-46.
  • 33. Plattner F, Bibb JA. Serine and threonine phosphorylation. Basic Neurochem 2012:467-492
  • 34. Carboni E, Carta AR, Carboni E. Can pioglitazone be potentially useful therapeutically. in treating patients with COVID-19? Med Hypotheses 2020;140:109776.
  • 35. Gorricho J, Garj_on J, Alonso A, Celaya MC, et al. Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case-control study. Br J Clin Pharmacol 2017;83(9):2034-44.
  • 36. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirusEMC. Nature 2013;495:251–254
  • 37. Reinhold D, Biton A, Goihl A, et al. Dual inhibition of dipeptidyl petidase IV and aminopeptidase N suppresses inflammatory immune responses. Ann N Y Acad Sci. 2007;1110:402-9.
  • 38. Bloomgarden ZT. Diabetes and COVID-19.Diabetes 2020:347- 348
  • 39. Iacobellis G. COVID-19 and diabetes: Can DPP4 inhibition play a role?. Diabetes Res Clin Pract. 2020;162:108125.
  • 40. Bloodworth MH, Rusznak M, Pfister CC, et al. Glucagon-like peptide 1 receptor signaling attenuates respiratory syncytial virus-induced type 2 responses and immunopathology. J Allergy Clin Immunol. 2018;142(2):683‐687.e12.
  • 41. Toki S, Goleniewska K, Reiss S, et al. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol. 2018;142(5):1515‐1528.e8.
  • 42. Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546‐550.
  • 43. Gajjar K, Luthra P. Euglycemic Diabetic Ketoacidosis in the Setting of SGLT2 Inhibitor Use and Hypertriglyceridemia: A Case Report and Review of Literature. Cureus. 2019;11(4):e4384.
  • 44. Henry C, Zaizafoun M, Stock E, et al. Impact of angiotensinconverting enzyme inhibitors and statins on viral pneumonia. Proc (Bayl Univ Med Cent). 2018 Oct 26;31(4):419-423.
  • 45. Kar P, Jones KL, Horowitz M, et al. Management of critically ill patients with type 2 diabetes: The need for personalised therapy. World J Diabetes. 2015;6(5):693-706.
  • 46. Wang W, Lu J, Gu W, et al. Care for diabetes with COVID-19: Advice from China. J Diabetes. 2020;12(5):417-419.
  • 47. Gupta R, Ghosh A, Singh AK, MisraA. Clinical considerations for diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr. 2020;14(3):211-212.
  • 48. Deng SQ, Peng HJ. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J. Clin. Med. 2020, 9, 575
  • 49. Bode B, Garrett V, Messler J, et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. J Diabetes Sci Technol. 2020;1932296820924469.
  • 50. Peric S, Stulnig TM. Diabetes and COVID-19: DiseaseManagement-People. Wien Klin Wochenschr. 2020;1‐6.
  • 51. Chee YJ, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020;164:108166.
  • 52. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab. 2020;10.1111/dom.14057. doi:10.1111/dom.14057
  • 53. Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16(6):297‐298.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Collection
Authors

Faruk Kutlutürk 0000-0002-3207-6910

Publication Date August 30, 2020
Acceptance Date August 4, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Kutlutürk, F. (2020). COVID-19 Pandemisi ve Diabetes Mellitus. Türkiye Diyabet Ve Obezite Dergisi, 4(2), 130-137. https://doi.org/10.25048/tudod.746139
AMA Kutlutürk F. COVID-19 Pandemisi ve Diabetes Mellitus. Turk J Diab Obes. August 2020;4(2):130-137. doi:10.25048/tudod.746139
Chicago Kutlutürk, Faruk. “COVID-19 Pandemisi Ve Diabetes Mellitus”. Türkiye Diyabet Ve Obezite Dergisi 4, no. 2 (August 2020): 130-37. https://doi.org/10.25048/tudod.746139.
EndNote Kutlutürk F (August 1, 2020) COVID-19 Pandemisi ve Diabetes Mellitus. Türkiye Diyabet ve Obezite Dergisi 4 2 130–137.
IEEE F. Kutlutürk, “COVID-19 Pandemisi ve Diabetes Mellitus”, Turk J Diab Obes, vol. 4, no. 2, pp. 130–137, 2020, doi: 10.25048/tudod.746139.
ISNAD Kutlutürk, Faruk. “COVID-19 Pandemisi Ve Diabetes Mellitus”. Türkiye Diyabet ve Obezite Dergisi 4/2 (August 2020), 130-137. https://doi.org/10.25048/tudod.746139.
JAMA Kutlutürk F. COVID-19 Pandemisi ve Diabetes Mellitus. Turk J Diab Obes. 2020;4:130–137.
MLA Kutlutürk, Faruk. “COVID-19 Pandemisi Ve Diabetes Mellitus”. Türkiye Diyabet Ve Obezite Dergisi, vol. 4, no. 2, 2020, pp. 130-7, doi:10.25048/tudod.746139.
Vancouver Kutlutürk F. COVID-19 Pandemisi ve Diabetes Mellitus. Turk J Diab Obes. 2020;4(2):130-7.

Turkish Journal of Diabetes and Obesity (Turk J Diab Obes) is a scientific publication of Zonguldak Bulent Ecevit University Obesity and Diabetes Research and Application Center.

This is a refereed journal, which is published in printed and electronic forms. It aims at achieving free knowledge to the related national and international organizations and individuals.

This journal is published annually three times (in April, August and December).

The publication language of the journal is Turkish and English.