Research Article
BibTex RIS Cite

Modeling of Body Composition Components in Obese Individuals

Year 2021, Volume: 5 Issue: 1, 1 - 6, 24.04.2021
https://doi.org/10.25048/tudod.823622

Abstract

Aim: In this study, it was purposed to estimate the body composition components of morbid obese individuals whose weight could not be measured with a body analysis device by modeling the body composition components of obese individuals.

Material and Methods: The body composition parameters of a total of 212 adult obese individuals, 160 female and 52 male, who applied to the Nutrition and Dietetics Outpatient Clinic, were analyzed retrospectively. Body composition measurements such as the amount of fat mass (FM), fat-free mass (FF), fluid mass (FD) and body fat percentage (FP) were evaluated with the segmental body analysis
device. In addition, demographic characteristics of individuals such as age-gender, stature and Body Mass Index data were taken from the hospital archive and analyzed. Mean, standard deviation and percentage values were used for parameters in statistical analysis. Four different models were developed using the nonparametric regression model for the relationships between age-gender data in the study
and stature, body weight, FM, FF, FD and FP measurements.

Results: The accuracy rate in the predictions to be made in the developed models was found as the highest 82.3% for FD and 50% for FP. It was found that body weight, stature and gender had an effect on components of body composition, whereas age had no effect on these parameters.

Conclusion: It was concluded that models developed according to our results can estimate body composition parameters in morbid obese patients whose body weight be measured with a body analysis device and these estimates can be used in clinical practice. This aspect of our study is thought to contribute to the literature.

References

  • 1. Müller MJ, Lagerpusch M, Enderle J, Schautz B, Heller M, Bosy-Westphal A. Beyond the body mass index: Tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev. 2012;13:6-13.
  • 2. Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes. 2010;34:4-17.
  • 3. Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635-643.
  • 4. Marra M, Sammarco R, De Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, Donini LM, Santarpia L, Cataldi M, Pasanisi F, Contaldo F. Assessment of body composition in health and disease using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A critical overview. Contrast Media Mol Imaging. 2019;2019:3548284.
  • 5. Sergi G, De Rui M, Stubbs B, Veronese N, Manzato E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin Exp Res. 2017;29:591-597.
  • 6. Kaya H, Özçelik O. Vücut bileşimlerinin değerlendirilmesinde vücut kitle indeksi ve biyoelektrik impedans analiz metodlarının etkinliğinin yaş ve cinsiyete göre karşılaştırılması. FÜ Sağ Bil Tıp Derg. 2009;23:1-5.
  • 7. Meleleo D, Bartolomeo N, Cassano L, Nitti A, Susca G, Mastrototaro G, Armenise U, Zito A, Devito F, Scicchitano P, Ciccone MM. Evaluation of body composition with bioimpedence. A comparison between athletic and. Eur J Sport Sci. 2017;17:710-719.
  • 8. Willoughby D, Hewlings S, Kalman D. Body composition changes in weight loss: Strategies and supplementation for maintaining lean body mass, a brief review. Nutrients. 2018;10(12):1876.
  • 9. Heo M, Kabat GC, Gallagher D, Heymsfield SB, Rohan TE. Optimal scaling of weight and waist circumference to height for maximal association with DXA-measured total body fat mass by sex, age and race/ethnicity. Int J Obes. 2013;37:1154- 1160.
  • 10. St-Onge MP, Gallagher D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition. 2010;26:152-155.
  • 11. Lim S, Joung H, Shin CS, Lee HK, Kim KS, Shin EK, Kim HY, Lim MK, Cho SI. Body composition changes with age have gender-specific impacts on bone mineral density. Bone. 2004;35:792-798.
  • 12. Reinders I, Visser M, Schaap L. Body weight and body composition in old age and their relationship with frailty. Curr Opin Clin Nutr Metab Care. 2017;20:11-15.
  • 13. Jahan MA. The role of source of protein in regulation of food intake, satiety, body weight and body composition. J Nutr Heal Food Eng. 2017;6:186-193.
  • 14. Lavie CJ, De Schutter A, Patel DA, Romero-Corral A, Artham SM, Milani RV. Body composition and survival in stable coronary heart disease: Impact of lean mass index and body fat in the ‘obesity paradox’. J Am Coll Cardiol. 2012;60:1374- 1380.
  • 15. Wong R, Barker J, Berreth T, Fox R, Maldonado M, Vancleave C, Zaragoza J, Tinnin M, Tinsley GM, Taylor LW IV, Brennan K. The effects of acute resistance exercise on bioelectrical impedance analysis measures of body composition. Doctor of Physical Therapy Program; Mayborn College of Health Sciences; University of Human Performance Lab; School of Exercise and. 60. International Journal of Exercise Science: Conference Proceedings. 2020.
  • 16. Verduin WM, Van Den Helder R, Doodeman HJ, Struijf E, Houdijk APJ. Dexa body composition assessment in 10-11 year healthy children. PLoS One. 2016;11:1-9.
  • 17. West J, Leinhard OD, Romu T, Collins R, Garratt S, Bell JD, Borga M, Thomas L. Feasibility of MR-based body composition analysis In large scale population studies. PLoS One. 2016;11:1-14.
  • 18. Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. Ann NY Acad Sci. 2015;1353:41-59.
  • 19. Guppy FM, Wallace JA. The measurement of body composition in an athletic population: The importance of DXA. Meas Control (United Kingdom). 2012;45: 177-181.
  • 20. Mersebach H, Svendsen OL, Holst JJ, Astrup A, Feldt- Rasmussen U. Comparisons of leptin, incretins and body composition in obese and lean patients with hypopituitarism and healthy individuals. Clin Endocrinol (Oxf). 2003;58:65- 71.
  • 21. Rush EC, Freitas I, Plank LD. Body size, body composition and fat distribution: Comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br J Nutr. 2009;102:632-641.
  • 22. Deurenberg P, Yap M, Van Staveren WA. Body mass index and percent body fat: A meta analysis among different ethnic groups. Int J Obes. 1998;22:1164-1171.
  • 23. Çetin İ, Muhtaroğlu S, Yılmaz B, Kurtoğlu S. Evaluation of segmental body composition by gender in obese children using bioelectric impedance analysis method. Dicle Tip Derg. 2015;42.

Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi

Year 2021, Volume: 5 Issue: 1, 1 - 6, 24.04.2021
https://doi.org/10.25048/tudod.823622

Abstract

Amaç: Bu çalışmada obez bireylerin vücut kompozisyon bileşenleri modellenerek vücut analizi cihazı ile ağırlığı ölçülemeyen morbid obezlerin vücut kompozisyon bileşenlerinin tahmininin yapılması amaçlandı.

Gereç ve Yöntemler: Beslenme ve Diyet Polikliniği’ne başvuran 160’ı kadın (%75,5), 52’si erkek (%24,5) olmak üzere toplam 212 yetişkin obez bireyin vücut kompozisyonu parametreleri retrospektif olarak incelendi. Yağ miktarı (YM), yağsız doku miktarı (YDM), sıvı miktarı (SM) ve yağ yüzdesi (YY) gibi vücut kompozisyon ölçümleri segmental vücut analizi cihazı ile değerlendirildi. Ayrıca bireylerin yaş, cinsiyet gibi demografik özellikleri ile boy uzunluğu ve beden kütle indeksi verileri hastane arşivinden alınarak incelendi. İstatistiksel
analizlerde parametreler için ortalama, standart sapma ve yüzde değerleri kullanıldı. Çalışmada yer alan yaş, cinsiyet verileri ile boy uzunluğu, vücut ağırlığı, YM, YDM, SM ve YY ölçümleri arasındaki ilişkilerden parametrik olmayan regresyon modeli kullanılarak 4 farklı model geliştirildi.

Bulgular: Geliştirilen modellerde yapılacak tahminlerdeki isabet derecesi en yüksek %82,3 ile SM’de ve en düşük de %50 olarak YY’de bulundu. Vücut ağırlığı, boy uzunluğu ve cinsiyetin vücut kompoziyonu bileşenleri üzerine etkisinin olduğu, yaşın ise bu parametreler üzerinde herhangi bir etki göstermediği saptandı.

Sonuç: Elde edilen sonuçlarımıza göre geliştirilen modellerle ağırlığı vücut analizi cihazı ile ölçülemeyen morbid obezlerde vücut kompozisyonu parametrelerinin tahmin edilebileceğini ve bu tahminlerin klinikte kullanılabileceği sonucuna varılmıştır. Çalışmamızın bu yönüyle literatüre katkı sağlayacağı düşünülmektedir.

References

  • 1. Müller MJ, Lagerpusch M, Enderle J, Schautz B, Heller M, Bosy-Westphal A. Beyond the body mass index: Tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev. 2012;13:6-13.
  • 2. Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes. 2010;34:4-17.
  • 3. Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635-643.
  • 4. Marra M, Sammarco R, De Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, Donini LM, Santarpia L, Cataldi M, Pasanisi F, Contaldo F. Assessment of body composition in health and disease using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A critical overview. Contrast Media Mol Imaging. 2019;2019:3548284.
  • 5. Sergi G, De Rui M, Stubbs B, Veronese N, Manzato E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin Exp Res. 2017;29:591-597.
  • 6. Kaya H, Özçelik O. Vücut bileşimlerinin değerlendirilmesinde vücut kitle indeksi ve biyoelektrik impedans analiz metodlarının etkinliğinin yaş ve cinsiyete göre karşılaştırılması. FÜ Sağ Bil Tıp Derg. 2009;23:1-5.
  • 7. Meleleo D, Bartolomeo N, Cassano L, Nitti A, Susca G, Mastrototaro G, Armenise U, Zito A, Devito F, Scicchitano P, Ciccone MM. Evaluation of body composition with bioimpedence. A comparison between athletic and. Eur J Sport Sci. 2017;17:710-719.
  • 8. Willoughby D, Hewlings S, Kalman D. Body composition changes in weight loss: Strategies and supplementation for maintaining lean body mass, a brief review. Nutrients. 2018;10(12):1876.
  • 9. Heo M, Kabat GC, Gallagher D, Heymsfield SB, Rohan TE. Optimal scaling of weight and waist circumference to height for maximal association with DXA-measured total body fat mass by sex, age and race/ethnicity. Int J Obes. 2013;37:1154- 1160.
  • 10. St-Onge MP, Gallagher D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition. 2010;26:152-155.
  • 11. Lim S, Joung H, Shin CS, Lee HK, Kim KS, Shin EK, Kim HY, Lim MK, Cho SI. Body composition changes with age have gender-specific impacts on bone mineral density. Bone. 2004;35:792-798.
  • 12. Reinders I, Visser M, Schaap L. Body weight and body composition in old age and their relationship with frailty. Curr Opin Clin Nutr Metab Care. 2017;20:11-15.
  • 13. Jahan MA. The role of source of protein in regulation of food intake, satiety, body weight and body composition. J Nutr Heal Food Eng. 2017;6:186-193.
  • 14. Lavie CJ, De Schutter A, Patel DA, Romero-Corral A, Artham SM, Milani RV. Body composition and survival in stable coronary heart disease: Impact of lean mass index and body fat in the ‘obesity paradox’. J Am Coll Cardiol. 2012;60:1374- 1380.
  • 15. Wong R, Barker J, Berreth T, Fox R, Maldonado M, Vancleave C, Zaragoza J, Tinnin M, Tinsley GM, Taylor LW IV, Brennan K. The effects of acute resistance exercise on bioelectrical impedance analysis measures of body composition. Doctor of Physical Therapy Program; Mayborn College of Health Sciences; University of Human Performance Lab; School of Exercise and. 60. International Journal of Exercise Science: Conference Proceedings. 2020.
  • 16. Verduin WM, Van Den Helder R, Doodeman HJ, Struijf E, Houdijk APJ. Dexa body composition assessment in 10-11 year healthy children. PLoS One. 2016;11:1-9.
  • 17. West J, Leinhard OD, Romu T, Collins R, Garratt S, Bell JD, Borga M, Thomas L. Feasibility of MR-based body composition analysis In large scale population studies. PLoS One. 2016;11:1-14.
  • 18. Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. Ann NY Acad Sci. 2015;1353:41-59.
  • 19. Guppy FM, Wallace JA. The measurement of body composition in an athletic population: The importance of DXA. Meas Control (United Kingdom). 2012;45: 177-181.
  • 20. Mersebach H, Svendsen OL, Holst JJ, Astrup A, Feldt- Rasmussen U. Comparisons of leptin, incretins and body composition in obese and lean patients with hypopituitarism and healthy individuals. Clin Endocrinol (Oxf). 2003;58:65- 71.
  • 21. Rush EC, Freitas I, Plank LD. Body size, body composition and fat distribution: Comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br J Nutr. 2009;102:632-641.
  • 22. Deurenberg P, Yap M, Van Staveren WA. Body mass index and percent body fat: A meta analysis among different ethnic groups. Int J Obes. 1998;22:1164-1171.
  • 23. Çetin İ, Muhtaroğlu S, Yılmaz B, Kurtoğlu S. Evaluation of segmental body composition by gender in obese children using bioelectric impedance analysis method. Dicle Tip Derg. 2015;42.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Research Article
Authors

Seda Sertel Meyvacı 0000-0002-9450-145X

Handan Ankaralı 0000-0002-3613-0523

Publication Date April 24, 2021
Acceptance Date February 15, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Sertel Meyvacı, S., & Ankaralı, H. (2021). Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi. Turkish Journal of Diabetes and Obesity, 5(1), 1-6. https://doi.org/10.25048/tudod.823622
AMA Sertel Meyvacı S, Ankaralı H. Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi. Turk J Diab Obes. April 2021;5(1):1-6. doi:10.25048/tudod.823622
Chicago Sertel Meyvacı, Seda, and Handan Ankaralı. “Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi”. Turkish Journal of Diabetes and Obesity 5, no. 1 (April 2021): 1-6. https://doi.org/10.25048/tudod.823622.
EndNote Sertel Meyvacı S, Ankaralı H (April 1, 2021) Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi. Turkish Journal of Diabetes and Obesity 5 1 1–6.
IEEE S. Sertel Meyvacı and H. Ankaralı, “Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi”, Turk J Diab Obes, vol. 5, no. 1, pp. 1–6, 2021, doi: 10.25048/tudod.823622.
ISNAD Sertel Meyvacı, Seda - Ankaralı, Handan. “Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi”. Turkish Journal of Diabetes and Obesity 5/1 (April 2021), 1-6. https://doi.org/10.25048/tudod.823622.
JAMA Sertel Meyvacı S, Ankaralı H. Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi. Turk J Diab Obes. 2021;5:1–6.
MLA Sertel Meyvacı, Seda and Handan Ankaralı. “Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi”. Turkish Journal of Diabetes and Obesity, vol. 5, no. 1, 2021, pp. 1-6, doi:10.25048/tudod.823622.
Vancouver Sertel Meyvacı S, Ankaralı H. Obez Bireylerde Vücut Kompozisyonu Bileşenlerinin Modellenmesi. Turk J Diab Obes. 2021;5(1):1-6.

Turkish Journal of Diabetes and Obesity (Turk J Diab Obes) is a scientific publication of Zonguldak Bulent Ecevit University Obesity and Diabetes Research and Application Center.

A Collaboration Protocol was signed between the Turkish Obesity Research Association and Zonguldak Bülent Ecevit University by taking an important step from the Turkish Journal of Diabetes and Obesity. As the Turkish Journal of Diabetes and Obesity, we are proud to open the doors of a new era in scientific publishing. With the collaboration of the Turkish Obesity Research Association and Zonguldak Bülent Ecevit University, our journal will now serve as a joint publication platform.

This is a refereed journal, which is published in printed and electronic forms. It aims at achieving free knowledge to the related national and international organizations and individuals.

This journal is published annually three times (in April, August and December).

The publication language of the journal is Turkish and English.