Review
BibTex RIS Cite

MikroRNA’ların Diyabetik Nefropatide Biyobelirteçler Olarak Ortaya Çıkan Rolleri

Year 2022, Volume: 6 Issue: 3, 287 - 295, 29.12.2022
https://doi.org/10.25048/tudod.1111845

Abstract

Diyabetik nefropati (DN), diabetes mellitusun (DM) en sık rastlanan komplikasyonlarından biri olmasının yanı sıra son dönem böbrek hastalıkları (SDBH) arasında da en sık rastlanan sağlık sorunudur. Bu kaygının gelecekte küresel bir fenomen haline geleceği son zamanlarda yapılan çalışmalarda açıkça rapor edilmiştir. DN’nin erken teşhisi, tedavisi için hayati önem taşımaktadır. MikroRNA (miRNA veya miR)’lar, DN için önerilen en umut verici yeni biyobelirteç adaylarıdır. Protein kodlamayan kısa zincirli RNA dizileri olarak bilinen miRNA’ların birçok hücresel olayda düzenleyici rolü olduğu bilinmektedir. Moleküler genetikteki ilerlemeler ve başarılı genomik teknikler, miRNA’ların birçok hastalığın tanısında kullanılmasına olanak sağlamaktadır. Günümüzde kullanılan DN tanı işaretleri bazı durumlar için yetersiz olduğundan yeni tanısal belirteçlerin belirlenmesi son çalışmaların temelini oluşturmaktadır. MiRNA’ların kanser, bağışıklık ve diyabet alanlarında başarılı kullanımı, DN perspektifinin miRNA’ya dayanması gerektiğini göstermektedir. Bu derlemede, miRNA’lar ve DN’deki rolleri gözden geçirilecektir

References

  • 1. Lim AK. Diabetic nephropathy – complications and treatment. Int J Nephrol Renov Dis 2014;7:361-81.
  • 2. Ulu İ, Çakmak Genç G, Karakaş Çeli̇K S. Sirtuin 1 ve Sirtuin 2’nin Tip 2 Diyabet ile İlişkisi. Turk J Diabetes Obes 2021;5:81-8.
  • 3. Breyer JA. Diabetic Nephropathy in Insulin-Dependent Patients. Am J Kidney Dis 1992;20:533-47.
  • 4. Roelofs JJ, Vogt L, editörler. Diabetic Nephropathy: Pathophysiology and Clinical Aspects. Cham: Springer International Publishing; 2019.
  • 5. Lampropoulou IT, Stangou Μ, Sarafidis P, Gouliovaki A, Giamalis P, Tsouchnikas I, vd. TNF-α pathway and T-cell immunity are activated early during the development of diabetic nephropathy in Type II Diabetes Mellitus. Clin Immunol 2020;215:108423.
  • 6. Dalla Vestra M, Mussap M, Gallina P, Bruseghin M, Cernigoi AM, Saller A, vd. Acute-Phase Markers of Inflammation and Glomerular Structure in Patients with Type 2 Diabetes. J Am Soc Nephrol 2005;16:S78-82.
  • 7. Miyauchi K, Takiyama Y, Honjyo J, Tateno M, Haneda M. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-β1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Diabetes Res Clin Pract 2009;83:190-9.
  • 8. Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013;64:85-94.
  • 9. Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol 2018;833:158-64.
  • 10. Chien H-Y, Chen C-Y, Chiu Y-H, Lin Y-C, Li W-C. Differential microRNA Profiles Predict Diabetic Nephropathy Progression in Taiwan. Int J Med Sci 2016;13:457-65.
  • 11. Simpson K, Wonnacott A, Fraser DJ, Bowen T. MicroRNAs in Diabetic Nephropathy: From Biomarkers to Therapy. Curr Diab Rep 2016;16:35.
  • 12. Mukhadi S, Hull R, Mbita Z, Dlamini Z. The Role of MicroRNAs in Kidney Disease. Non-Coding RNA 2015;1:192-221.
  • 13. Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, vd. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell 2006;126:1203-17.
  • 14. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010;466:835-40.
  • 15. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008;455:64-71.
  • 16. Kalaçay D, Hacışevki A. miRNA 29 ailesi: Diyabetik nefropatideki rolleri. İçinde: Yücel D, editör. Güncel Biyokim. Çalışmaları III, Ankara: Akademisyen Yayınevi; 2022.
  • 17. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010;10:111-22.
  • 18. Iorio MV, Croce CM. MicroRNAs in Cancer: Small Molecules With a Huge Impact. J Clin Oncol 2009;27:5848-56.
  • 19. Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens 2012;21:410-6.
  • 20. Gregory RI, Yan K, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, vd. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432:235-40.
  • 21. Rhoads RE, editör. MiRNA regulation of the translational machinery. Berlin ; New York: Springer; 2010.
  • 22. Yi R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011-6.
  • 23. Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, vd. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009;76:665-77.
  • 24. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015;15:321-33.
  • 25. Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009;136:215-33.
  • 26. Pordzik J, Jakubik D, Jarosz-Popek J, Wicik Z, Eyileten C, De Rosa S, vd. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovasc Diabetol 2019;18:113.
  • 27. Arenz C, editör. miRNA maturation: methods and protocols. New York: Humana Press ; Springer; 2014.
  • 28. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016;1:1-9.
  • 29. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, vd. A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. N Engl J Med 2005;353:1793-801.
  • 30. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, vd. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005;102:13944-9.
  • 31. Bouillet P, Cory S, Zhang L-C, Strasser A, Adams JM. Degenerative Disorders Caused by Bcl-2 Deficiency Prevented by Loss of Its BH3-Only Antagonist Bim. Dev Cell 2001;1:645-53.
  • 32. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, vd. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 2011;351:197-205.
  • 33. Motawi TK, Shehata NI, ElNokeety MM, El-Emady YF. Potential serum biomarkers for early detection of diabetic nephropathy. Diabetes Res Clin Pract 2018;136:150-8.
  • 34. Guo J, Li J, Zhao J, Yang S, Wang L, Cheng G, vd. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep 2017;7:2314.
  • 35. Ibrahim AA, Soliman HM, El-Lebedy D, Hassan M, Helmy NA, Abdel Hamid TA, vd. Expression of exosomal miR-21 and miR-29 in serum of children and adolescents with T1DM and persistent microalbuminuria. Gene Rep 2019;16:100461.
  • 36. Saadi G, El Meligi A, El-Ansary M, Alkemary A, Ahmed G. Evaluation of microRNA-192 in patients with diabetic nephropathy. Egypt J Intern Med 2019;31:122-8.
  • 37. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol JASN 2012;23:458-69.
  • 38. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int 2011;80:358-68.
  • 39. Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, vd. Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol 2013;50:965-9.
  • 40. Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X, vd. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 2009;583:2009-14.
  • 41. Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, vd. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett 2012;586:20-6.
  • 42. Wang N, Zhou Y, Jiang L, Li D, Yang J, Zhang C-Y, vd. Urinary MicroRNA-10a and MicroRNA-30d Serve as Novel, Sensitive and Specific Biomarkers for Kidney Injury. PLoS ONE 2012;7.
  • 43. Long J, Wang Y, Wang W, Chang BHJ, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 2011;286:11837-48.
  • 44. Guo J, Li J, Zhao J, Yang S, Wang L, Cheng G, vd. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep 2017;7:2314.
  • 45. Wang J, Duan L, Guo T, Gao Y, Tian L, Liu J, vd. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy. J Diabetes Complications 2016;30:406-14.
  • 46. zhang L, He S, Wang Y, Zhu X, Shao W, Xu Q, vd. miRNA-20a suppressed lipopolysaccharide‐induced HK‐2 cells injury via NFκB and ERK1/2 signaling by targeting CXCL12. Mol Immunol 2020;118:117-23.
  • 47. Liu Y, Xiao J, Zhao Y, Zhao C, Yang Q, Du X, vd. microRNA-216a protects against human retinal microvascular endothelial cell injury in diabetic retinopathy by suppressing the NOS2/JAK/STAT axis. Exp Mol Pathol 2020;115:104445.
  • 48. Fu Y, Zhang Y, Wang Z, Wang L, Wei X, Zhang B, vd. Regulation of NADPH Oxidase Activity Is Associated with miRNA-25-Mediated NOX4 Expression in Experimental Diabetic Nephropathy. Am J Nephrol 2010;32:581-9.
  • 49. Chaurasiya V, Kumari S, Onteru SK, Singh D. Up-regulation of miR-326 regulates pro-inflammatory cytokines targeting TLR-4 in buffalo granulosa cells. Mol Immunol 2020;119:154-8.
  • 50. Wu J, Lu K, Zhu M, Xie X, Ding Y, Shao X, vd. miR-485 suppresses inflammation and proliferation of mesangial cells in an in vitro model of diabetic nephropathy by targeting NOX5. Biochem Biophys Res Commun 2020;521:984-90.
  • 51. Yang M, Kan L, Zhu Y, Wu L, Bai S, Cha F, vd. The effect of Baicalein on the NF-κB/P65 expression in the peripheral blood of patients with diabetic nephropathy and in vitro. Biomed Res India 2017;28:5540-5.
  • 52. Eissa S, Matboli M, Bekhet MM. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother 2016;83:92-9.
  • 53. Zhou Z, Wan J, Hou X, Geng J, Li X, Bai X. MicroRNA-27a promotes podocyte injury via PPAR γ -mediated β -catenin activation in diabetic nephropathy. Cell Death Dis 2017;8:e2658-e2658.
  • 54. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, vd. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004;32:e188-e188.
  • 55. Sawera M, Gorodkin J, Cirera S, Fredholm M. Mapping and expression studies of the mir17-92 cluster on pig Chromosome 11. Mamm Genome 2005;16:594-8.
  • 56. Roy S, Khanna S, Hussain S-RA, Biswas S, Azad A, Rink C, vd. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 2009;82:21-9.
  • 57. Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 2008;27:5527-41.
  • 58. Chalhoub N, Baker SJ. PTEN and the PI3-Kinase Pathway in Cancer. Annu Rev Pathol 2009;4:127-50.
  • 59. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004;117:1281-3.
  • 60. Zhao S-Q, Shen Z-C, Gao B-F, Han P. microRNA-206 overexpression inhibits epithelial-mesenchymal transition and glomerulosclerosis in rats with chronic kidney disease by inhibiting JAK/STAT signaling pathway. J Cell Biochem 2019;120:14604-17.
  • 61. Guo Q, Zhong W, Duan A, Sun G, Cui W, Zhuang X, vd. Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: An unresolved issue. Pharmacol Res 2019;144:151-7.
  • 62. Hsu Y-C, Chang P-J, Ho C, Huang Y-T, Shih Y-H, Wang C-J, vd. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/β-catenin signaling. Sci Rep 2016;6:30575.
  • 63. Pasupulati AK, Paturi ASV. The sponging effect of a lncRNA on a miRNA contributes to diabetic nephropathy. Mol Ther - Nucleic Acids 2022;28:259-60.
  • 64. Wang Y, He Z, Yang Q, Zhou G. XBP1 inhibits mesangial cell apoptosis in response to oxidative stress via the PTEN/AKT pathway in diabetic nephropathy. FEBS Open Bio 2019;9:1249-58.
  • 65. Wang G, Wu B, Zhang B, Wang K, Wang H. LncRNA CTBP1-AS2 alleviates high glucose-induced oxidative stress, ECM accumulation, and inflammation in diabetic nephropathy via miR-155-5p/FOXO1 axis. Biochem Biophys Res Commun 2020;532:308-14.
  • 66. Wu H, Kong L, Tan Y, Epstein PN, Zeng J, Gu J, vd. C66 ameliorates diabetic nephropathy in mice by both upregulating NRF2 function via increase in miR-200a and inhibiting miR-21. Diabetologia 2016;59:1558-68.
  • 67. Wei J, Zhang Y, Luo Y, Wang Z, Bi S, Song D, vd. Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1–Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radic Biol Med 2014;67:91-102.
  • 68. Marques‐Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation‐related diseases. FASEB J 2015;29:3595-611.
  • 69. Rovira-Llopis S, Escribano-Lopez I, Diaz-Morales N, Iannantuoni F, Lopez-Domenech S, Andújar I, vd. Downregulation of miR-31 in Diabetic Nephropathy and its Relationship with Inflammation. Cell Physiol Biochem 2018;50:1005-14.
  • 70. Liang C, Gao L, Liu Y, Liu Y, Yao R, Li Y, vd. MiR-451 antagonist protects against cardiac fibrosis in streptozotocin-induced diabetic mouse heart. Life Sci 2019;224:12-22.
  • 71. Liu L, Wang Y, Yan R, Liang L, Zhou X, Liu H, vd. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation. Life Sci 2019;238:116957.
  • 72. Chen X, Zhao L, Xing Y, Lin B. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomed Pharmacother 2018;108:7-14.

The Emerging Roles of MicroRNAs as Biomarkers in Diabetic Nephropathy

Year 2022, Volume: 6 Issue: 3, 287 - 295, 29.12.2022
https://doi.org/10.25048/tudod.1111845

Abstract

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus (DM), as well as the most common health issue among End Stage Renal Diseases (ESRD). Recent studies have shown that this concern will likely to become a global phenomenon in the future. Early diagnosis of DN is vital for its treatment. MicroRNAs (miRNAs or miRs) are the most promising for new biomarker candidates proposed for DN. MiRNAs, known as non protein-coding short-chain RNA sequences, have a regulatory role in many cellular events. Advances in molecular genetics and successful genomic techniques allow miRNAs to be used in the diagnosis of several diseases. As the DN diagnostic markers used today are insufficient for some cases, identifying new diagnostic markers is the basis of recent studies. Successful use of miRNAs in the areas of cancer, immunity and diabetes indicates that the DN perspective should be based on miRNA. In this review, miRNAs and their role in DN will be reviewed.

References

  • 1. Lim AK. Diabetic nephropathy – complications and treatment. Int J Nephrol Renov Dis 2014;7:361-81.
  • 2. Ulu İ, Çakmak Genç G, Karakaş Çeli̇K S. Sirtuin 1 ve Sirtuin 2’nin Tip 2 Diyabet ile İlişkisi. Turk J Diabetes Obes 2021;5:81-8.
  • 3. Breyer JA. Diabetic Nephropathy in Insulin-Dependent Patients. Am J Kidney Dis 1992;20:533-47.
  • 4. Roelofs JJ, Vogt L, editörler. Diabetic Nephropathy: Pathophysiology and Clinical Aspects. Cham: Springer International Publishing; 2019.
  • 5. Lampropoulou IT, Stangou Μ, Sarafidis P, Gouliovaki A, Giamalis P, Tsouchnikas I, vd. TNF-α pathway and T-cell immunity are activated early during the development of diabetic nephropathy in Type II Diabetes Mellitus. Clin Immunol 2020;215:108423.
  • 6. Dalla Vestra M, Mussap M, Gallina P, Bruseghin M, Cernigoi AM, Saller A, vd. Acute-Phase Markers of Inflammation and Glomerular Structure in Patients with Type 2 Diabetes. J Am Soc Nephrol 2005;16:S78-82.
  • 7. Miyauchi K, Takiyama Y, Honjyo J, Tateno M, Haneda M. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-β1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Diabetes Res Clin Pract 2009;83:190-9.
  • 8. Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013;64:85-94.
  • 9. Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol 2018;833:158-64.
  • 10. Chien H-Y, Chen C-Y, Chiu Y-H, Lin Y-C, Li W-C. Differential microRNA Profiles Predict Diabetic Nephropathy Progression in Taiwan. Int J Med Sci 2016;13:457-65.
  • 11. Simpson K, Wonnacott A, Fraser DJ, Bowen T. MicroRNAs in Diabetic Nephropathy: From Biomarkers to Therapy. Curr Diab Rep 2016;16:35.
  • 12. Mukhadi S, Hull R, Mbita Z, Dlamini Z. The Role of MicroRNAs in Kidney Disease. Non-Coding RNA 2015;1:192-221.
  • 13. Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, vd. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell 2006;126:1203-17.
  • 14. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010;466:835-40.
  • 15. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008;455:64-71.
  • 16. Kalaçay D, Hacışevki A. miRNA 29 ailesi: Diyabetik nefropatideki rolleri. İçinde: Yücel D, editör. Güncel Biyokim. Çalışmaları III, Ankara: Akademisyen Yayınevi; 2022.
  • 17. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010;10:111-22.
  • 18. Iorio MV, Croce CM. MicroRNAs in Cancer: Small Molecules With a Huge Impact. J Clin Oncol 2009;27:5848-56.
  • 19. Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens 2012;21:410-6.
  • 20. Gregory RI, Yan K, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, vd. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432:235-40.
  • 21. Rhoads RE, editör. MiRNA regulation of the translational machinery. Berlin ; New York: Springer; 2010.
  • 22. Yi R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011-6.
  • 23. Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, vd. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009;76:665-77.
  • 24. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015;15:321-33.
  • 25. Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009;136:215-33.
  • 26. Pordzik J, Jakubik D, Jarosz-Popek J, Wicik Z, Eyileten C, De Rosa S, vd. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovasc Diabetol 2019;18:113.
  • 27. Arenz C, editör. miRNA maturation: methods and protocols. New York: Humana Press ; Springer; 2014.
  • 28. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016;1:1-9.
  • 29. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, vd. A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. N Engl J Med 2005;353:1793-801.
  • 30. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, vd. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005;102:13944-9.
  • 31. Bouillet P, Cory S, Zhang L-C, Strasser A, Adams JM. Degenerative Disorders Caused by Bcl-2 Deficiency Prevented by Loss of Its BH3-Only Antagonist Bim. Dev Cell 2001;1:645-53.
  • 32. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, vd. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 2011;351:197-205.
  • 33. Motawi TK, Shehata NI, ElNokeety MM, El-Emady YF. Potential serum biomarkers for early detection of diabetic nephropathy. Diabetes Res Clin Pract 2018;136:150-8.
  • 34. Guo J, Li J, Zhao J, Yang S, Wang L, Cheng G, vd. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep 2017;7:2314.
  • 35. Ibrahim AA, Soliman HM, El-Lebedy D, Hassan M, Helmy NA, Abdel Hamid TA, vd. Expression of exosomal miR-21 and miR-29 in serum of children and adolescents with T1DM and persistent microalbuminuria. Gene Rep 2019;16:100461.
  • 36. Saadi G, El Meligi A, El-Ansary M, Alkemary A, Ahmed G. Evaluation of microRNA-192 in patients with diabetic nephropathy. Egypt J Intern Med 2019;31:122-8.
  • 37. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol JASN 2012;23:458-69.
  • 38. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int 2011;80:358-68.
  • 39. Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, vd. Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol 2013;50:965-9.
  • 40. Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X, vd. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 2009;583:2009-14.
  • 41. Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, vd. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett 2012;586:20-6.
  • 42. Wang N, Zhou Y, Jiang L, Li D, Yang J, Zhang C-Y, vd. Urinary MicroRNA-10a and MicroRNA-30d Serve as Novel, Sensitive and Specific Biomarkers for Kidney Injury. PLoS ONE 2012;7.
  • 43. Long J, Wang Y, Wang W, Chang BHJ, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 2011;286:11837-48.
  • 44. Guo J, Li J, Zhao J, Yang S, Wang L, Cheng G, vd. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep 2017;7:2314.
  • 45. Wang J, Duan L, Guo T, Gao Y, Tian L, Liu J, vd. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy. J Diabetes Complications 2016;30:406-14.
  • 46. zhang L, He S, Wang Y, Zhu X, Shao W, Xu Q, vd. miRNA-20a suppressed lipopolysaccharide‐induced HK‐2 cells injury via NFκB and ERK1/2 signaling by targeting CXCL12. Mol Immunol 2020;118:117-23.
  • 47. Liu Y, Xiao J, Zhao Y, Zhao C, Yang Q, Du X, vd. microRNA-216a protects against human retinal microvascular endothelial cell injury in diabetic retinopathy by suppressing the NOS2/JAK/STAT axis. Exp Mol Pathol 2020;115:104445.
  • 48. Fu Y, Zhang Y, Wang Z, Wang L, Wei X, Zhang B, vd. Regulation of NADPH Oxidase Activity Is Associated with miRNA-25-Mediated NOX4 Expression in Experimental Diabetic Nephropathy. Am J Nephrol 2010;32:581-9.
  • 49. Chaurasiya V, Kumari S, Onteru SK, Singh D. Up-regulation of miR-326 regulates pro-inflammatory cytokines targeting TLR-4 in buffalo granulosa cells. Mol Immunol 2020;119:154-8.
  • 50. Wu J, Lu K, Zhu M, Xie X, Ding Y, Shao X, vd. miR-485 suppresses inflammation and proliferation of mesangial cells in an in vitro model of diabetic nephropathy by targeting NOX5. Biochem Biophys Res Commun 2020;521:984-90.
  • 51. Yang M, Kan L, Zhu Y, Wu L, Bai S, Cha F, vd. The effect of Baicalein on the NF-κB/P65 expression in the peripheral blood of patients with diabetic nephropathy and in vitro. Biomed Res India 2017;28:5540-5.
  • 52. Eissa S, Matboli M, Bekhet MM. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother 2016;83:92-9.
  • 53. Zhou Z, Wan J, Hou X, Geng J, Li X, Bai X. MicroRNA-27a promotes podocyte injury via PPAR γ -mediated β -catenin activation in diabetic nephropathy. Cell Death Dis 2017;8:e2658-e2658.
  • 54. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, vd. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004;32:e188-e188.
  • 55. Sawera M, Gorodkin J, Cirera S, Fredholm M. Mapping and expression studies of the mir17-92 cluster on pig Chromosome 11. Mamm Genome 2005;16:594-8.
  • 56. Roy S, Khanna S, Hussain S-RA, Biswas S, Azad A, Rink C, vd. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 2009;82:21-9.
  • 57. Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 2008;27:5527-41.
  • 58. Chalhoub N, Baker SJ. PTEN and the PI3-Kinase Pathway in Cancer. Annu Rev Pathol 2009;4:127-50.
  • 59. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004;117:1281-3.
  • 60. Zhao S-Q, Shen Z-C, Gao B-F, Han P. microRNA-206 overexpression inhibits epithelial-mesenchymal transition and glomerulosclerosis in rats with chronic kidney disease by inhibiting JAK/STAT signaling pathway. J Cell Biochem 2019;120:14604-17.
  • 61. Guo Q, Zhong W, Duan A, Sun G, Cui W, Zhuang X, vd. Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: An unresolved issue. Pharmacol Res 2019;144:151-7.
  • 62. Hsu Y-C, Chang P-J, Ho C, Huang Y-T, Shih Y-H, Wang C-J, vd. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/β-catenin signaling. Sci Rep 2016;6:30575.
  • 63. Pasupulati AK, Paturi ASV. The sponging effect of a lncRNA on a miRNA contributes to diabetic nephropathy. Mol Ther - Nucleic Acids 2022;28:259-60.
  • 64. Wang Y, He Z, Yang Q, Zhou G. XBP1 inhibits mesangial cell apoptosis in response to oxidative stress via the PTEN/AKT pathway in diabetic nephropathy. FEBS Open Bio 2019;9:1249-58.
  • 65. Wang G, Wu B, Zhang B, Wang K, Wang H. LncRNA CTBP1-AS2 alleviates high glucose-induced oxidative stress, ECM accumulation, and inflammation in diabetic nephropathy via miR-155-5p/FOXO1 axis. Biochem Biophys Res Commun 2020;532:308-14.
  • 66. Wu H, Kong L, Tan Y, Epstein PN, Zeng J, Gu J, vd. C66 ameliorates diabetic nephropathy in mice by both upregulating NRF2 function via increase in miR-200a and inhibiting miR-21. Diabetologia 2016;59:1558-68.
  • 67. Wei J, Zhang Y, Luo Y, Wang Z, Bi S, Song D, vd. Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1–Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radic Biol Med 2014;67:91-102.
  • 68. Marques‐Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation‐related diseases. FASEB J 2015;29:3595-611.
  • 69. Rovira-Llopis S, Escribano-Lopez I, Diaz-Morales N, Iannantuoni F, Lopez-Domenech S, Andújar I, vd. Downregulation of miR-31 in Diabetic Nephropathy and its Relationship with Inflammation. Cell Physiol Biochem 2018;50:1005-14.
  • 70. Liang C, Gao L, Liu Y, Liu Y, Yao R, Li Y, vd. MiR-451 antagonist protects against cardiac fibrosis in streptozotocin-induced diabetic mouse heart. Life Sci 2019;224:12-22.
  • 71. Liu L, Wang Y, Yan R, Liang L, Zhou X, Liu H, vd. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation. Life Sci 2019;238:116957.
  • 72. Chen X, Zhao L, Xing Y, Lin B. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomed Pharmacother 2018;108:7-14.
There are 72 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Collection
Authors

Destan Kalaçay 0000-0002-3921-5549

Aysun Hacışevki 0000-0002-3844-5772

Publication Date December 29, 2022
Acceptance Date September 15, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Kalaçay, D., & Hacışevki, A. (2022). The Emerging Roles of MicroRNAs as Biomarkers in Diabetic Nephropathy. Turkish Journal of Diabetes and Obesity, 6(3), 287-295. https://doi.org/10.25048/tudod.1111845
AMA Kalaçay D, Hacışevki A. The Emerging Roles of MicroRNAs as Biomarkers in Diabetic Nephropathy. Turk J Diab Obes. December 2022;6(3):287-295. doi:10.25048/tudod.1111845
Chicago Kalaçay, Destan, and Aysun Hacışevki. “The Emerging Roles of MicroRNAs As Biomarkers in Diabetic Nephropathy”. Turkish Journal of Diabetes and Obesity 6, no. 3 (December 2022): 287-95. https://doi.org/10.25048/tudod.1111845.
EndNote Kalaçay D, Hacışevki A (December 1, 2022) The Emerging Roles of MicroRNAs as Biomarkers in Diabetic Nephropathy. Turkish Journal of Diabetes and Obesity 6 3 287–295.
IEEE D. Kalaçay and A. Hacışevki, “The Emerging Roles of MicroRNAs as Biomarkers in Diabetic Nephropathy”, Turk J Diab Obes, vol. 6, no. 3, pp. 287–295, 2022, doi: 10.25048/tudod.1111845.
ISNAD Kalaçay, Destan - Hacışevki, Aysun. “The Emerging Roles of MicroRNAs As Biomarkers in Diabetic Nephropathy”. Turkish Journal of Diabetes and Obesity 6/3 (December 2022), 287-295. https://doi.org/10.25048/tudod.1111845.
JAMA Kalaçay D, Hacışevki A. The Emerging Roles of MicroRNAs as Biomarkers in Diabetic Nephropathy. Turk J Diab Obes. 2022;6:287–295.
MLA Kalaçay, Destan and Aysun Hacışevki. “The Emerging Roles of MicroRNAs As Biomarkers in Diabetic Nephropathy”. Turkish Journal of Diabetes and Obesity, vol. 6, no. 3, 2022, pp. 287-95, doi:10.25048/tudod.1111845.
Vancouver Kalaçay D, Hacışevki A. The Emerging Roles of MicroRNAs as Biomarkers in Diabetic Nephropathy. Turk J Diab Obes. 2022;6(3):287-95.

Turkish Journal of Diabetes and Obesity (Turk J Diab Obes) is a scientific publication of Zonguldak Bulent Ecevit University Obesity and Diabetes Research and Application Center.

A Collaboration Protocol was signed between the Turkish Obesity Research Association and Zonguldak Bülent Ecevit University by taking an important step from the Turkish Journal of Diabetes and Obesity. As the Turkish Journal of Diabetes and Obesity, we are proud to open the doors of a new era in scientific publishing. With the collaboration of the Turkish Obesity Research Association and Zonguldak Bülent Ecevit University, our journal will now serve as a joint publication platform.

This is a refereed journal, which is published in printed and electronic forms. It aims at achieving free knowledge to the related national and international organizations and individuals.

This journal is published annually three times (in April, August and December).

The publication language of the journal is Turkish and English.