Research Article
BibTex RIS Cite

Evaulation of renewable energy source alternatives prioritization

Year 2023, , 1 - 8, 15.01.2023
https://doi.org/10.31127/tuje.1001488

Abstract

Today the renewable energy is an alternative energy source being more important. The reasons for its importance are minimizing the risks at environmental, economic and social areas caused by the traditional energy sources and reducing the need for energy importation. Because of these it is important to determine the affecting criteria of the renewable energy sources for the investors of this industry as a guide. In modelling and analysis of the criteria and the sub-criteria MCDM (Multi Criteria Decision Making Model) can be used. In this study, the ANP model is used to propose evaluation of the renewable energy source selection criteria. In this study, an application of the recommended basis for the renewable energy source selection problem criteria and the ANP model for the optimum renewable energy source project is proposed. The expert opinions are employed to gather data in the proposed model. The technical, environmental, economic, and social risk criteria and the importance levels of the sub-criteria are analyzed under the light of the expert opinions. The Hazardous Waste, Effects to Climate Changes, Noise, Reduction in Gas Emission and National Energy Security are found as the superior criteria.

References

  • Solangi, Y. A., Tan, Q., Mirjat, N. H., Valasai, G. D., Khan, M. W. A., & Ikram, M. (2019). An integrated Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes, 7(2), 118.
  • Arto, I., Capellán-Pérez, I., Lago, R., Bueno, G., & Bermejo, R. (2016). The energy requirements of a developed world. Energy for Sustainable Development, 33, 1-13.
  • Toklu, M. C., & Taşkın, H. (2018). A fuzzy hybrid decision model for renewable energy sources selection. International Journal of Computational and Experimental Science and Engineering (IJCESEN), 4(1), 6-10.
  • Boran, F. E., Boran, K., & Menlik, T. (2012). The evaluation of renewable energy technologies for electricity generation in Turkey using intuitionistic fuzzy TOPSIS. Energy Sources, Part B: Economics, Planning, and Policy, 7(1), 81-90.
  • Raturi, A. K. (2019). Renewables 2019 global status report. (Paris: REN21 Secretariat). ISBN 978-3-9818911-7-1.
  • Algarín, C. R. (2017). An analytic hierarchy process based approach for evaluating renewable energy sources.
  • Karakaş, E. (2019). Evaluation of renewable energy alternatives for Turkey via modified fuzzy ahp.
  • Budak, G., Chen, X., Celik, S., & Ozturk, B. (2019). A systematic approach for assessment of renewable energy using analytic hierarchy process. Energy, Sustainability and Society, 9(1), 1-14.
  • Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable energy, 63, 458-466.
  • Çelikbilek, Y., & Tüysüz, F. (2016). An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources. Energy, 115, 1246-1258.
  • Büyüközkan, G., & Güleryüz, S. (2016). An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey. International Journal of Production Economics, 182, 435-448.
  • Büyüközkan, G., & Karabulut, Y. (2017). Energy project performance evaluation with sustainability perspective. Energy, 119, 549-560.
  • Rani, P., Mishra, A. R., Mardani, A., Cavallaro, F., Alrasheedi, M., & Alrashidi, A. (2020). A novel approach to extended fuzzy TOPSIS based on new divergence measures for renewable energy sources selection. Journal of Cleaner Production, 257, 120352.
  • Wang, Y., Xu, L., & Solangi, Y. A. (2020). Strategic renewable energy resources selection for Pakistan: Based on SWOT-Fuzzy AHP approach. Sustainable Cities and Society, 52, 101861.
  • Wu, Y., Wang, J., Ji, S., & Song, Z. (2020). Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method. Energy, 190, 116381.
  • Gülenç, İ. F., & Bilgin, G. A. (2010). Yatırım kararları için bir model önerisi: AHP Yöntemi-A model proposal for investment decisions: AHP Method. Öneri Dergisi, 9(34), 97-107.
  • Ömürbek, N. (2013). Analitik hiyerarşi süreci ve analitik ağ süreci yöntemlerinde grup karari verilmesi aşamasina ilişkin bir örnek uygulama. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(3), 47-70.
  • Saaty, T. L. (2005). Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS publications.
  • Burnaz, S., & Topcu, Y. I. (2006). A multiple‐criteria decision‐making approach for the evaluation of retail location. Journal of Multi‐Criteria Decision Analysis, 14(1‐3), 67-76.
  • Saaty, T. L. (2004). Decision making—the analytic hierarchy and network processes (AHP/ANP). Journal of systems science and systems engineering, 13(1), 1-35.
  • Görener, A. (2012). Comparing AHP and ANP: an application of strategic decisions making in a manufacturing company. International Journal of Business and Social Science, 3(11).
  • Kahraman, C., Birgün, S., & Yenen, V. Z. (2008). Fuzzy multi-attribute scoring methods with applications. In Fuzzy Multi-Criteria Decision Making (pp. 187-208). Springer, Boston, MA.
  • Saaty, T. (1980). The analytic hierarchy process (AHP) for decision making. In Kobe, Japan.
  • Çakıl, E. Y. (2017). Bir mermer fabrikasındaki makinenin çok kriterli karar verme metotları kullanılarak seçilmesi. Master's thesis, İzmir Kâtip Çelebi University.
  • Maya, R., & Eren, T. (2018). Türk gıda sektörünün finansal performans analizinin çok kriterli karar verme yöntemleri ile yapılması. Verimlilik Dergisi, 3(3), 31-60.
  • Kurttila, M., Pesonen, M., Kangas, J., & Kajanus, M. (2000). Utilizing the analytic hierarchy process (AHP) in SWOT analysis—a hybrid method and its application to a forest-certification case. Forest Policy and Economics. 1(1), 41-52.
  • Saaty, T. L. (1993). What is relative measurement? The ratio scale phantom. Mathematical and Computer Modelling, 17(4-5), 1-12
  • Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European journal of operational research, 145(1), 85-91.
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83-98.
  • Feng, C., H. Wang, & X. M. Tu. (2013). Geometric mean of nonnegative random variable. Communications in Statistics - Theory and Methods 42 (15):2714–2717.
  • Karpak, B., & Topcu, I. (2010). Small medium manufacturing enterprises in Turkey: An analytic network process framework for prioritizing factors affecting success. International Journal of Production Economics, 125(1), 60-70.
Year 2023, , 1 - 8, 15.01.2023
https://doi.org/10.31127/tuje.1001488

Abstract

References

  • Solangi, Y. A., Tan, Q., Mirjat, N. H., Valasai, G. D., Khan, M. W. A., & Ikram, M. (2019). An integrated Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes, 7(2), 118.
  • Arto, I., Capellán-Pérez, I., Lago, R., Bueno, G., & Bermejo, R. (2016). The energy requirements of a developed world. Energy for Sustainable Development, 33, 1-13.
  • Toklu, M. C., & Taşkın, H. (2018). A fuzzy hybrid decision model for renewable energy sources selection. International Journal of Computational and Experimental Science and Engineering (IJCESEN), 4(1), 6-10.
  • Boran, F. E., Boran, K., & Menlik, T. (2012). The evaluation of renewable energy technologies for electricity generation in Turkey using intuitionistic fuzzy TOPSIS. Energy Sources, Part B: Economics, Planning, and Policy, 7(1), 81-90.
  • Raturi, A. K. (2019). Renewables 2019 global status report. (Paris: REN21 Secretariat). ISBN 978-3-9818911-7-1.
  • Algarín, C. R. (2017). An analytic hierarchy process based approach for evaluating renewable energy sources.
  • Karakaş, E. (2019). Evaluation of renewable energy alternatives for Turkey via modified fuzzy ahp.
  • Budak, G., Chen, X., Celik, S., & Ozturk, B. (2019). A systematic approach for assessment of renewable energy using analytic hierarchy process. Energy, Sustainability and Society, 9(1), 1-14.
  • Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable energy, 63, 458-466.
  • Çelikbilek, Y., & Tüysüz, F. (2016). An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources. Energy, 115, 1246-1258.
  • Büyüközkan, G., & Güleryüz, S. (2016). An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey. International Journal of Production Economics, 182, 435-448.
  • Büyüközkan, G., & Karabulut, Y. (2017). Energy project performance evaluation with sustainability perspective. Energy, 119, 549-560.
  • Rani, P., Mishra, A. R., Mardani, A., Cavallaro, F., Alrasheedi, M., & Alrashidi, A. (2020). A novel approach to extended fuzzy TOPSIS based on new divergence measures for renewable energy sources selection. Journal of Cleaner Production, 257, 120352.
  • Wang, Y., Xu, L., & Solangi, Y. A. (2020). Strategic renewable energy resources selection for Pakistan: Based on SWOT-Fuzzy AHP approach. Sustainable Cities and Society, 52, 101861.
  • Wu, Y., Wang, J., Ji, S., & Song, Z. (2020). Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method. Energy, 190, 116381.
  • Gülenç, İ. F., & Bilgin, G. A. (2010). Yatırım kararları için bir model önerisi: AHP Yöntemi-A model proposal for investment decisions: AHP Method. Öneri Dergisi, 9(34), 97-107.
  • Ömürbek, N. (2013). Analitik hiyerarşi süreci ve analitik ağ süreci yöntemlerinde grup karari verilmesi aşamasina ilişkin bir örnek uygulama. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(3), 47-70.
  • Saaty, T. L. (2005). Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS publications.
  • Burnaz, S., & Topcu, Y. I. (2006). A multiple‐criteria decision‐making approach for the evaluation of retail location. Journal of Multi‐Criteria Decision Analysis, 14(1‐3), 67-76.
  • Saaty, T. L. (2004). Decision making—the analytic hierarchy and network processes (AHP/ANP). Journal of systems science and systems engineering, 13(1), 1-35.
  • Görener, A. (2012). Comparing AHP and ANP: an application of strategic decisions making in a manufacturing company. International Journal of Business and Social Science, 3(11).
  • Kahraman, C., Birgün, S., & Yenen, V. Z. (2008). Fuzzy multi-attribute scoring methods with applications. In Fuzzy Multi-Criteria Decision Making (pp. 187-208). Springer, Boston, MA.
  • Saaty, T. (1980). The analytic hierarchy process (AHP) for decision making. In Kobe, Japan.
  • Çakıl, E. Y. (2017). Bir mermer fabrikasındaki makinenin çok kriterli karar verme metotları kullanılarak seçilmesi. Master's thesis, İzmir Kâtip Çelebi University.
  • Maya, R., & Eren, T. (2018). Türk gıda sektörünün finansal performans analizinin çok kriterli karar verme yöntemleri ile yapılması. Verimlilik Dergisi, 3(3), 31-60.
  • Kurttila, M., Pesonen, M., Kangas, J., & Kajanus, M. (2000). Utilizing the analytic hierarchy process (AHP) in SWOT analysis—a hybrid method and its application to a forest-certification case. Forest Policy and Economics. 1(1), 41-52.
  • Saaty, T. L. (1993). What is relative measurement? The ratio scale phantom. Mathematical and Computer Modelling, 17(4-5), 1-12
  • Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European journal of operational research, 145(1), 85-91.
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83-98.
  • Feng, C., H. Wang, & X. M. Tu. (2013). Geometric mean of nonnegative random variable. Communications in Statistics - Theory and Methods 42 (15):2714–2717.
  • Karpak, B., & Topcu, I. (2010). Small medium manufacturing enterprises in Turkey: An analytic network process framework for prioritizing factors affecting success. International Journal of Production Economics, 125(1), 60-70.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Barış Kantoğlu 0000-0002-7832-1619

İrem Duzdar Argun 0000-0002-7642-8121

Publication Date January 15, 2023
Published in Issue Year 2023

Cite

APA Kantoğlu, B., & Duzdar Argun, İ. (2023). Evaulation of renewable energy source alternatives prioritization. Turkish Journal of Engineering, 7(1), 1-8. https://doi.org/10.31127/tuje.1001488
AMA Kantoğlu B, Duzdar Argun İ. Evaulation of renewable energy source alternatives prioritization. TUJE. January 2023;7(1):1-8. doi:10.31127/tuje.1001488
Chicago Kantoğlu, Barış, and İrem Duzdar Argun. “Evaulation of Renewable Energy Source Alternatives Prioritization”. Turkish Journal of Engineering 7, no. 1 (January 2023): 1-8. https://doi.org/10.31127/tuje.1001488.
EndNote Kantoğlu B, Duzdar Argun İ (January 1, 2023) Evaulation of renewable energy source alternatives prioritization. Turkish Journal of Engineering 7 1 1–8.
IEEE B. Kantoğlu and İ. Duzdar Argun, “Evaulation of renewable energy source alternatives prioritization”, TUJE, vol. 7, no. 1, pp. 1–8, 2023, doi: 10.31127/tuje.1001488.
ISNAD Kantoğlu, Barış - Duzdar Argun, İrem. “Evaulation of Renewable Energy Source Alternatives Prioritization”. Turkish Journal of Engineering 7/1 (January 2023), 1-8. https://doi.org/10.31127/tuje.1001488.
JAMA Kantoğlu B, Duzdar Argun İ. Evaulation of renewable energy source alternatives prioritization. TUJE. 2023;7:1–8.
MLA Kantoğlu, Barış and İrem Duzdar Argun. “Evaulation of Renewable Energy Source Alternatives Prioritization”. Turkish Journal of Engineering, vol. 7, no. 1, 2023, pp. 1-8, doi:10.31127/tuje.1001488.
Vancouver Kantoğlu B, Duzdar Argun İ. Evaulation of renewable energy source alternatives prioritization. TUJE. 2023;7(1):1-8.
Flag Counter