Research Article
BibTex RIS Cite
Year 2023, , 166 - 171, 05.07.2023
https://doi.org/10.31127/tuje.1026075

Abstract

Supporting Institution

SDU BAP

Project Number

FDK-2019-6950

Thanks

Bu çalışma; Gümüşhane Üniversitesi bünyesinde yapılan Uluslararası Mühendislik ve Doğa Bilimler Konferansı (IOCENS'21) nda 11 ID li çalışmadır. Bu dergiye gönderilmesi önerilmiştir.

References

  • Kılınçarslan, Ş., Şimşek Türker, Y. (2020). Ahşap Malzemelerin Islanabilirlik Özelliği Üzerine Isıl İşlem Uygulamasının Etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 460-466.
  • Sahin, H. T., Arslan, M. B., Korkut, S., & Sahin, C. (2011). Colour Changes of Heat‐Treated Woods of Red‐Bud Maple, European Hophornbeam and Oak. Color Research & Application, 36(6), 462-466.
  • Sahin, C. K., & Onay, B. (2020). Alternatıve Wood Species for Playgrounds Wood from Fruit Trees. Wood Research, 65(1), 149- 160.
  • Sahin, C., Topay, M., & Var, A. A. (2020). A Study on Some Wood Species for Landscape Applications: Surface Color, Hardness and Roughness Changes at Outdoor Conditions. Wood Research, 65(3), 395-404.
  • Şimşek Türker, Y. (2020). Strengthening of Wood Materials Using Composites, 7 th International Conference on Computational and Experimental Science and Engineering (ICCESEN2020), 244-249, Antalya/Turkey.
  • Fridley, K. J. (2002). Wood and wood-based materials: Current status and future of a structural material. Journal of materials in civil engineering, 14(2), 91-96.
  • Foliente, G. C. (1995). Hysteresis modeling of wood joints and structural systems. Journal of Structural Engineering, 121(6), 1013-1022.
  • Saribiyik, M., & Akgül, T. (2010). GFRP Bar Element to Strengthen Timber Connection Systems. Scientific Research and Essays. 5 (13), 1713-1719.
  • Özdemir, D., & Mecit, D. (2006). Cam lifleri, Tekstil ve Konfeksiyon Dergisi, 1 (1), 281.
  • Barragan, O. (2007). Flexural Strengthening of Glued Laminated Timber Beams with Steel and Carbon Fiber Reinforced Polymers, M.S. thesis, Dept. Civil and Environmental Eng., Chalmers University, Göteborg, Sweden.
  • Schwartz, M. M. (1984). Composite Materials Handbook, 2nd ed. New York, USA, 8, 26-47.
  • Fiorelli, J., & Dias, A. A. (2003). Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Materials research, 6, 193–202.
  • Fossetti, M., Minafò, G., & Papia, M. (2015). Flexural behaviour of glulam timber beams reinforced with FRP cords. Construction and Building Materials, 95, 54-64.
  • Kilincarslan, S., & Şimşek Türker, Y. (2019). The Effect of Strengthening with Fıber Reinforced Polymers on Strength Propertıes of Wood Beams, 2nd International Turkish World Engineering and Science Congress, November 7-10, 2019, Turkey.
  • Rescalvo, F. J., Abarkane, C., Suárez, E., Valverde-Palacios, I., & Gallego, A. (2019). Pine Beams Retrofitted with FRP and Poplar Planks. Mechanical Behavior. Materials, 12(19), 3081.
  • Kilincarslan, S., Şimşek Türker, Y. (2021). Experimental investigation of the rotational behaviour of glulam column-beam joints reinforced with fiber reinforced polymer composites. Composite Structures, 262, 113612.
  • Donadon, B. F., Mascia, N. T., Vilela, R., & Trautwein, L. M. (2020). Experimental investigation of glued-laminated timber beams with Vectran-FRP reinforcement. Engineering Structures, 202, 109818.
  • Fletcher, A. (1994). Advanced Composites-A Profile of the International Advanced Composites Industry. Elsevier Science, 2 (2), 384-385.
  • Van Gemert, D., & Bosch, M. V. (1987). Structural restoration of wooden beams by means of epoxy resin. Materials and Structures, 20(3), 165-170.
  • Schober, K. U., Harte, A. M., Kliger, R., Jockwer, R., Xu, Q., & Chen, J. F. (2015). FRP reinforcement of timber structures. Construction and Building Materials, 97, 106-118.
  • Chen, C. J. (1999) Mechanical behavior of fiberglass reinforced timber joints. Ph.D Thesis, N° 1940. Swiss Federal Institute of Technology Lausanne EPFL, Switzerland, 135p.
  • Bakis, C. E., Bank, L. C., Brown, V. L., Cosenza, E., Davalos, J. F., Lesko, J. J., Machida, A., Rizkalla, S. H., & Triantaffillou, T. (2002). Fiber-Reinforced Polymer Composites for Construction: State-Of the Art Review, Journal of Composites for Construction, ASCE, 6(2), 73-87.
  • Harries, K. A., Zorn, A., Aidoo, J., & Quattlebaum, J. (2006). Deterioration of FRP to Concrete Bond Under Fatigue Loading. Adv Structure Engineering, 9(6), 77989.
  • Kim, Y. J., & Heffernan, P. J. (2008). Fatigue behavior of externally strengthened concrete beams with fiber-reinforced polymers: State of the art. Journal of Composites for Construction, 12(3), 246-256.
  • Lopez-Anido, R., & Hong, Y. (2003). Fatigue and fracture of the FRPwood interface: Experimental characterization and performance limits. Univ. of Maine, Advanced Engineered Wood Composites Center USA, Rep. 236.
  • Steiger, R. (2002). Fibre reinforced plastics (FRP) in timber structures–Investigations and developments. Conference of the eurowood Workshop on Engineered Wood Products– Innovation and Exploitation, Espoo, Finnland, 50-53.
  • Pupsys, T., Corradi, M., Borri, A., & Amess, L. (2017). Bending Reinforcement of Full-Scale Timber Beams with Mechanically Attached GFRP Composite Plates. Dept. of Mechanical & Construction Engineering, Northumbria University, July 2017. United Kingdom.
  • Muratoğlu, A. (2011). Reinforcement of Wood Building Components with Carbon Fiber Reinforced Polymers (Cfrp) in Restoration: Karabük University, 2011; 1219-1240.
  • Kilincarslan, S., & Şimşek Türker, Y. (2021). The Effect of Strengthening with FRP on the Flexural Properties of Heat-Treated Beams, Emerging Materials Research.
  • Wang, B., Bachtiar, E. V., Yan, L., Kasal, B., & Fiore, V. (2019). Flax, Basalt, E-Glass FRP and Their Hybrid FRP Strengthened Wood Beams: An Experimental Study. Polymers, 11(8), 1255.
  • Ling, Z., Liu, W., & Shao, J. (2020). Experimental and theoretical investigation on shear behaviour of small-scale timber beams strengthened with Fiber-Reinforced Polymer composites. Composite Structures, 240, 111989.
  • Yaltırık, F. (1978). Türkiye’deki Doğal Oleaceae Taksonlarının Sistematik Revizyonu. İstanbul Üniversitesi Orman Fakültesi Yayın No: 2404.
  • OGM (2015). Türkiye Orman Varlığı 2015. T.C. Orman ve Su İşleri Bakanlığı, Orman Genel Müdürlüğü, Ankara.
  • BASF, (2022). https://www.master-builders-solutions.com/tr-tr/products/masterbrace

Strengthening of solid beam with fiber reinforced polymers

Year 2023, , 166 - 171, 05.07.2023
https://doi.org/10.31127/tuje.1026075

Abstract

Timber, concrete and steel are among the traditional building materials used in the construction of buildings. Since concrete is a durable material, it is a building material used in buildings, highways, dams, sidewalks and many other areas. Wood is one of the oldest building materials, and the use of wood and wood-based materials for structural purposes continues to increase. The deterioration of existing wooden structures may result from fatigue and biological attack over time. The cost of replacing the damaged wooden elements is very high, so it seems more appropriate to repair and strengthen the damaged elements. In this study, 20x20x360 mm solid wood beam is reinforced with fiber reinforced polymers and the effect of fiber reinforced polymers on the bending properties of the beam was investigated. In order to determine the bending properties, three-point bending test was applied to the wood beams. As a result of this study, it was determined that the bending properties of wood beam reinforced with fiber reinforced polymer composites were better than the reference samples.

Project Number

FDK-2019-6950

References

  • Kılınçarslan, Ş., Şimşek Türker, Y. (2020). Ahşap Malzemelerin Islanabilirlik Özelliği Üzerine Isıl İşlem Uygulamasının Etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 460-466.
  • Sahin, H. T., Arslan, M. B., Korkut, S., & Sahin, C. (2011). Colour Changes of Heat‐Treated Woods of Red‐Bud Maple, European Hophornbeam and Oak. Color Research & Application, 36(6), 462-466.
  • Sahin, C. K., & Onay, B. (2020). Alternatıve Wood Species for Playgrounds Wood from Fruit Trees. Wood Research, 65(1), 149- 160.
  • Sahin, C., Topay, M., & Var, A. A. (2020). A Study on Some Wood Species for Landscape Applications: Surface Color, Hardness and Roughness Changes at Outdoor Conditions. Wood Research, 65(3), 395-404.
  • Şimşek Türker, Y. (2020). Strengthening of Wood Materials Using Composites, 7 th International Conference on Computational and Experimental Science and Engineering (ICCESEN2020), 244-249, Antalya/Turkey.
  • Fridley, K. J. (2002). Wood and wood-based materials: Current status and future of a structural material. Journal of materials in civil engineering, 14(2), 91-96.
  • Foliente, G. C. (1995). Hysteresis modeling of wood joints and structural systems. Journal of Structural Engineering, 121(6), 1013-1022.
  • Saribiyik, M., & Akgül, T. (2010). GFRP Bar Element to Strengthen Timber Connection Systems. Scientific Research and Essays. 5 (13), 1713-1719.
  • Özdemir, D., & Mecit, D. (2006). Cam lifleri, Tekstil ve Konfeksiyon Dergisi, 1 (1), 281.
  • Barragan, O. (2007). Flexural Strengthening of Glued Laminated Timber Beams with Steel and Carbon Fiber Reinforced Polymers, M.S. thesis, Dept. Civil and Environmental Eng., Chalmers University, Göteborg, Sweden.
  • Schwartz, M. M. (1984). Composite Materials Handbook, 2nd ed. New York, USA, 8, 26-47.
  • Fiorelli, J., & Dias, A. A. (2003). Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Materials research, 6, 193–202.
  • Fossetti, M., Minafò, G., & Papia, M. (2015). Flexural behaviour of glulam timber beams reinforced with FRP cords. Construction and Building Materials, 95, 54-64.
  • Kilincarslan, S., & Şimşek Türker, Y. (2019). The Effect of Strengthening with Fıber Reinforced Polymers on Strength Propertıes of Wood Beams, 2nd International Turkish World Engineering and Science Congress, November 7-10, 2019, Turkey.
  • Rescalvo, F. J., Abarkane, C., Suárez, E., Valverde-Palacios, I., & Gallego, A. (2019). Pine Beams Retrofitted with FRP and Poplar Planks. Mechanical Behavior. Materials, 12(19), 3081.
  • Kilincarslan, S., Şimşek Türker, Y. (2021). Experimental investigation of the rotational behaviour of glulam column-beam joints reinforced with fiber reinforced polymer composites. Composite Structures, 262, 113612.
  • Donadon, B. F., Mascia, N. T., Vilela, R., & Trautwein, L. M. (2020). Experimental investigation of glued-laminated timber beams with Vectran-FRP reinforcement. Engineering Structures, 202, 109818.
  • Fletcher, A. (1994). Advanced Composites-A Profile of the International Advanced Composites Industry. Elsevier Science, 2 (2), 384-385.
  • Van Gemert, D., & Bosch, M. V. (1987). Structural restoration of wooden beams by means of epoxy resin. Materials and Structures, 20(3), 165-170.
  • Schober, K. U., Harte, A. M., Kliger, R., Jockwer, R., Xu, Q., & Chen, J. F. (2015). FRP reinforcement of timber structures. Construction and Building Materials, 97, 106-118.
  • Chen, C. J. (1999) Mechanical behavior of fiberglass reinforced timber joints. Ph.D Thesis, N° 1940. Swiss Federal Institute of Technology Lausanne EPFL, Switzerland, 135p.
  • Bakis, C. E., Bank, L. C., Brown, V. L., Cosenza, E., Davalos, J. F., Lesko, J. J., Machida, A., Rizkalla, S. H., & Triantaffillou, T. (2002). Fiber-Reinforced Polymer Composites for Construction: State-Of the Art Review, Journal of Composites for Construction, ASCE, 6(2), 73-87.
  • Harries, K. A., Zorn, A., Aidoo, J., & Quattlebaum, J. (2006). Deterioration of FRP to Concrete Bond Under Fatigue Loading. Adv Structure Engineering, 9(6), 77989.
  • Kim, Y. J., & Heffernan, P. J. (2008). Fatigue behavior of externally strengthened concrete beams with fiber-reinforced polymers: State of the art. Journal of Composites for Construction, 12(3), 246-256.
  • Lopez-Anido, R., & Hong, Y. (2003). Fatigue and fracture of the FRPwood interface: Experimental characterization and performance limits. Univ. of Maine, Advanced Engineered Wood Composites Center USA, Rep. 236.
  • Steiger, R. (2002). Fibre reinforced plastics (FRP) in timber structures–Investigations and developments. Conference of the eurowood Workshop on Engineered Wood Products– Innovation and Exploitation, Espoo, Finnland, 50-53.
  • Pupsys, T., Corradi, M., Borri, A., & Amess, L. (2017). Bending Reinforcement of Full-Scale Timber Beams with Mechanically Attached GFRP Composite Plates. Dept. of Mechanical & Construction Engineering, Northumbria University, July 2017. United Kingdom.
  • Muratoğlu, A. (2011). Reinforcement of Wood Building Components with Carbon Fiber Reinforced Polymers (Cfrp) in Restoration: Karabük University, 2011; 1219-1240.
  • Kilincarslan, S., & Şimşek Türker, Y. (2021). The Effect of Strengthening with FRP on the Flexural Properties of Heat-Treated Beams, Emerging Materials Research.
  • Wang, B., Bachtiar, E. V., Yan, L., Kasal, B., & Fiore, V. (2019). Flax, Basalt, E-Glass FRP and Their Hybrid FRP Strengthened Wood Beams: An Experimental Study. Polymers, 11(8), 1255.
  • Ling, Z., Liu, W., & Shao, J. (2020). Experimental and theoretical investigation on shear behaviour of small-scale timber beams strengthened with Fiber-Reinforced Polymer composites. Composite Structures, 240, 111989.
  • Yaltırık, F. (1978). Türkiye’deki Doğal Oleaceae Taksonlarının Sistematik Revizyonu. İstanbul Üniversitesi Orman Fakültesi Yayın No: 2404.
  • OGM (2015). Türkiye Orman Varlığı 2015. T.C. Orman ve Su İşleri Bakanlığı, Orman Genel Müdürlüğü, Ankara.
  • BASF, (2022). https://www.master-builders-solutions.com/tr-tr/products/masterbrace
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şemsettin Kılınçarslan 0000-0001-8253-9357

Yasemin Şimşek Türker 0000-0002-3080-0215

Project Number FDK-2019-6950
Publication Date July 5, 2023
Published in Issue Year 2023

Cite

APA Kılınçarslan, Ş., & Şimşek Türker, Y. (2023). Strengthening of solid beam with fiber reinforced polymers. Turkish Journal of Engineering, 7(3), 166-171. https://doi.org/10.31127/tuje.1026075
AMA Kılınçarslan Ş, Şimşek Türker Y. Strengthening of solid beam with fiber reinforced polymers. TUJE. July 2023;7(3):166-171. doi:10.31127/tuje.1026075
Chicago Kılınçarslan, Şemsettin, and Yasemin Şimşek Türker. “Strengthening of Solid Beam With Fiber Reinforced Polymers”. Turkish Journal of Engineering 7, no. 3 (July 2023): 166-71. https://doi.org/10.31127/tuje.1026075.
EndNote Kılınçarslan Ş, Şimşek Türker Y (July 1, 2023) Strengthening of solid beam with fiber reinforced polymers. Turkish Journal of Engineering 7 3 166–171.
IEEE Ş. Kılınçarslan and Y. Şimşek Türker, “Strengthening of solid beam with fiber reinforced polymers”, TUJE, vol. 7, no. 3, pp. 166–171, 2023, doi: 10.31127/tuje.1026075.
ISNAD Kılınçarslan, Şemsettin - Şimşek Türker, Yasemin. “Strengthening of Solid Beam With Fiber Reinforced Polymers”. Turkish Journal of Engineering 7/3 (July 2023), 166-171. https://doi.org/10.31127/tuje.1026075.
JAMA Kılınçarslan Ş, Şimşek Türker Y. Strengthening of solid beam with fiber reinforced polymers. TUJE. 2023;7:166–171.
MLA Kılınçarslan, Şemsettin and Yasemin Şimşek Türker. “Strengthening of Solid Beam With Fiber Reinforced Polymers”. Turkish Journal of Engineering, vol. 7, no. 3, 2023, pp. 166-71, doi:10.31127/tuje.1026075.
Vancouver Kılınçarslan Ş, Şimşek Türker Y. Strengthening of solid beam with fiber reinforced polymers. TUJE. 2023;7(3):166-71.
Flag Counter