Research Article
BibTex RIS Cite

A critical study on the treatability of metal plating industry wastewater and real scale adaptation

Year 2024, , 427 - 435, 28.07.2024
https://doi.org/10.31127/tuje.1406437

Abstract

Water pollution is one of the major problems for humankind. Various pollutants could be detected in wastewater because of human activities such as industrialization, agriculture, domestic waste and etc. Removal of pollutants such as heavy metals, dyes, oils and pesticides are of great importance which affects human life negatively. Many methods have been extensively used to provide “clean water” for environment and human. Heavy metals are important industrial pollutants that need to be quickly removed from wastewater due to their high toxicity and non-biodegradable structure. In this paper, the heavy metals including copper, nickel and zinc have been examined in real wastewater from metal plating industry in Bursa, Türkiye. Concentrations of pollutants (Cu, Ni, Zn, chemical oxygen demand (COD) and SO4) in the effluent as a result of coagulation-flocculation process were determined and their compliance with sewage discharge standards was investigated. Moreover, the removal efficiencies of the pollutants were examined (Cu and Ni: 97-100%; Zn: 82-98%; COD: 32-54%; SO4: 16-23%) and the effect of the coagulant doses used on the operating cost, sludge quantity were also discussed.

References

  • Palansooriya, K. N., Yang, Y., Tsang, Y. F., Sarkar, B., Hou, D., Cao, X., ... & Ok, Y. S. (2020). Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Critical Reviews in Environmental Science and Technology, 50(6), 549-611. https://doi.org/10.1080/10643389.2019.1629803
  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17, 145-155. https://doi.org/10.1007/s10311-018-0785-9
  • Karakas, I., Sam, S. B., Cetin, E., Dulekgurgen, E., & Yilmaz, G. (2020). Resource recovery from an aerobic granular sludge process treating domestic wastewater. Journal of Water Process Engineering, 34, 101148. https://doi.org/10.1016/j.jwpe.2020.101148
  • Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., & Guerrero, V. H. (2021). Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504
  • Yati, I., Kizil, S., & Bulbul Sonmez, H. (2019). Cellulose-based hydrogels for water treatment. In Cellulose-Based Superabsorbent Hydrogels, 1015-1037. Springer, Cham.
  • Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0
  • Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., ... & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688. https://doi.org/10.1016/j.jece.2021.105688
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6
  • Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., & Yao, X. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, e00925. https://doi.org/10.1016/j.gecco.2020.e00925
  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
  • Zhu, Y., Fan, W., Zhou, T., & Li, X. (2019). Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of the Total Environment, 678, 253-266. https://doi.org/10.1016/j.scitotenv.2019.04.416
  • Nguyen, M. K., Pham, T. T., Pham, H. G., Hoang, B. L., Nguyen, T. H., Nguyen, T. H., ... & Ngo, H. H. (2021). Fenton/ozone-based oxidation and coagulation processes for removing metals (Cu, Ni)-EDTA from plating wastewater. Journal of Water Process Engineering, 39, 101836. https://doi.org/10.1016/j.jwpe.2020.101836
  • Hosseini, S. S., Bringas, E., Tan, N. R., Ortiz, I., Ghahramani, M., & Shahmirzadi, M. A. A. (2016). Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review. Journal of Water Process Engineering, 9, 78-110. https://doi.org/10.1016/j.jwpe.2015.11.005
  • Katsumata, H., Kaneco, S., Inomata, K., Itoh, K., Funasaka, K., Masuyama, K., ... & Ohta, K. (2003). Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. Journal of Environmental Management, 69(2), 187-191. https://doi.org/10.1016/S0301-4797(03)00145-2
  • Kurniawan, T. A., Chan, G. Y., Lo, W. H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1-2), 83-98. https://doi.org/10.1016/j.cej.2006.01.015
  • Hosseini, S. S., Bringas, E., Tan, N. R., Ortiz, I., Ghahramani, M., & Shahmirzadi, M. A. A. (2016). Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review. Journal of Water Process Engineering, 9, 78-110. https://doi.org/10.1016/j.jwpe.2015.11.005
  • Oden, M. K., & Sari-Erkan, H. (2018). Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance. Process Safety and Environmental Protection, 119, 207-217. https://doi.org/10.1016/j.psep.2018.08.001
  • Akbal, F., & Camcı, S. (2012). Treatment of metal plating wastewater by electrocoagulation. Environmental Progress & Sustainable Energy, 31(3), 340-350. https://doi.org/10.1002/ep.10546
  • Zoungrana, A., Çakmakci, M., Zengin, İ. H., İnoğlu, Ö., & Elcik, H. (2016). Treatment of metal-plating waste water by modified direct contact membrane distillation. Chemical Papers, 70(9), 1185-1195. https://doi.org/10.1515/chempap-2016-0066
  • Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology, 49, 252-260. https://doi.org/10.1016/j.jtemb.2018.02.009
  • Kumar, A., Kumar, A., MMS, C. P., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., ... & Yadav, K. K. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7), 2179. https://doi.org/10.3390/ijerph17072179
  • Witkowska, D., Słowik, J., & Chilicka, K. (2021). Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules, 26(19), 6060. https://doi.org/10.3390/molecules26196060
  • Kesari, K. K., Soni, R., Jamal, Q. M. S., Tripathi, P., Lal, J. A., Jha, N. K., ... & Ruokolainen, J. (2021). Wastewater treatment and reuse: a review of its applications and health implications. Water, Air, & Soil Pollution, 232, 1-28. https://doi.org/10.1007/s11270-021-05154-8
  • Hunsom, M., Pruksathorn, K., Damronglerd, S., Vergnes, H., & Duverneuil, P. (2005). Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Research, 39(4), 610-616. https://doi.org/10.1016/j.watres.2004.10.011
  • Ilhan, F., Ulucan-Altuntas, K., Avsar, Y., Kurt, U., & Saral, A. (2019). Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption. Frontiers of Environmental Science & Engineering, 13, 1-8. https://doi.org/10.1007/s11783-019-1152-1
  • Baskar, A. V., Bolan, N., Hoang, S. A., Sooriyakumar, P., Kumar, M., Singh, L., ... & Siddique, K. H. (2022). Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Science of the Total Environment, 822, 153555. https://doi.org/10.1016/j.scitotenv.2022.153555
  • Kaur, J., Sengupta, P., & Mukhopadhyay, S. (2022). Critical review of bioadsorption on modified cellulose and removal of divalent heavy metals (Cd, Pb, and Cu). Industrial & Engineering Chemistry Research, 61(5), 1921-1954. https://doi.org/10.1021/acs.iecr.1c04583
  • Braga, W. L. M., Roberto, J. A., Vaz, C., Samanamud, G. R. L., Loures, C. C. A., Franca, A. B., ... & Naves, F. L. (2018). Extraction and optimization of tannin from the flower of Musa sp. applied to the treatment of iron ore dump. Journal of Environmental Chemical Engineering, 6(4), 4310-4317. https://doi.org/10.1016/j.jece.2018.05.058
  • El Gaayda, J., Rachid, Y., Titchou, F. E., Barra, I., Hsini, A., Yap, P. S., ... & Akbour, R. A. (2023). Optimizing removal of chromium (VI) ions from water by coagulation process using central composite design: Effectiveness of grape seed as a green coagulant. Separation and Purification Technology, 307, 122805. https://doi.org/10.1016/j.seppur.2022.122805
  • Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., ... & Shi, Y. (2017). Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere, 173, 199-206. https://doi.org/10.1016/j.chemosphere.2016.12.137
  • Chang, S., Ahmad, R., Kwon, D. E., & Kim, J. (2020). Hybrid ceramic membrane reactor combined with fluidized adsorbents and scouring agents for hazardous metal-plating wastewater treatment. Journal of Hazardous Materials, 388, 121777. https://doi.org/10.1016/j.jhazmat.2019.121777
  • Agridiotis, V., Forster, C. F., & Carliell-Marquet, C. (2007). Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics. Bioresource Technology, 98(15), 2926-2934. https://doi.org/10.1016/j.biortech.2006.10.004
  • Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., & Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, 749-756. https://doi.org/10.1016/j.cej.2014.09.035
  • Sinha, S., Yoon, Y., Amy, G., & Yoon, J. (2004). Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes. Chemosphere, 57(9), 1115-1122. https://doi.org/10.1016/j.chemosphere.2004.08.012
  • Inam, M. A., Khan, R., Akram, M., Khan, S., Park, D. R., & Yeom, I. T. (2019). Interaction of arsenic species with organic ligands: Competitive removal from water by coagulation-flocculation-sedimentation (C/F/S). Molecules, 24(8), 1619. https://doi.org/10.3390/molecules24081619
  • Folens, K., Huysman, S., Van Hulle, S., & Du Laing, G. (2017). Chemical and economic optimization of the coagulation-flocculation process for silver removal and recovery from industrial wastewater. Separation and Purification Technology, 179, 145-151. https://doi.org/10.1016/j.seppur.2017.02.013
  • Zhao, C., Shao, S., Zhou, Y., Yang, Y., Shao, Y., Zhang, L., ... & Luo, L. (2018). Optimization of flocculation conditions for soluble cadmium removal using the composite flocculant of green anion polyacrylamide and PAC by response surface methodology. Science of the Total Environment, 645, 267-276. https://doi.org/10.1016/j.scitotenv.2018.07.070
  • Sun, Y., Chen, A., Pan, S. Y., Sun, W., Zhu, C., Shah, K. J., & Zheng, H. (2019). Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation. Journal of Environmental Management, 248, 109241. https://doi.org/10.1016/j.jenvman.2019.07.012
  • Yang, K., Wang, G., Chen, X., Wang, X., & Liu, F. (2018). Treatment of wastewater containing Cu2+ using a novel macromolecular heavy metal chelating flocculant xanthated chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 558, 384-391. https://doi.org/10.1016/j.colsurfa.2018.06.082
  • El Gaayda, J., Rachid, Y., Titchou, F. E., Barra, I., Hsini, A., Yap, P. S., ... & Akbour, R. A. (2023). Optimizing removal of chromium (VI) ions from water by coagulation process using central composite design: Effectiveness of grape seed as a green coagulant. Separation and Purification Technology, 307, 122805. https://doi.org/10.1016/j.seppur.2022.122805
  • Kılıç, M. Y., & Kumbasar, P. (2023). Çinko-nikel alaşım kaplama atıksularının kimyasal arıtabilirliğinin araştırılması. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 307-316. https://doi.org/10.17482/uumfd.1249112
  • DOSAB (2019). DOSAB Atıksu Altyapı Yönetim Talimatı 2019.
  • Baird, R., Rice, E., & Eaton, A. (2017). Standard methods for the examination of water and wastewaters. Water Environment Federation, Chair Eugene W. Rice, American Public Health Association Andrew D. Eaton, American Water Works Association.
  • Öztel, M. D., Kuleyin, A., & Akbal, F. (2020). Treatment of zinc plating wastewater by combination of electrocoagulation and ultrafiltration process. Water Science and Technology, 82(4), 663-672. https://doi.org/10.2166/wst.2020.357
  • Yatim, S. R. M., Zainuddin, N. A., Mokhtar, N. S., Syahjidan, H. N., & Kamsuri, S. N. H. (2021, February). Competitiveness in removing copper, zinc and chromium trivalent in plating industrial effluent by using hydroxide precipitation versus sulphide precipitation. In IOP Conference Series: Materials Science and Engineering, 1053(1), 012084. https://doi.org/10.1088/1757-899X/1053/1/012084
  • Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., & Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, 749-756. https://doi.org/10.1016/j.cej.2014.09.035
  • Yatim, S. R. M., Zainuddin, N. A., Mokhtar, N. S., Syahjidan, H. N., & Kamsuri, S. N. H. (2021). Competitiveness in removing copper, zinc and chromium trivalent in plating industrial effluent by using hydroxide precipitation versus sulphide precipitation. In IOP Conference Series: Materials Science and Engineering, 1053(1), 012084. https://doi.org/10.1088/1757-899X/1053/1/012084
  • Xu, D., Zhou, B., & Yuan, R. (2019). Optimization of coagulation-flocculation treatment of wastewater containing Zn (II) and Cr (VI). In IOP Conference Series: Earth and Environmental Science, 227, 052049. https://doi.org/10.1088/1755-1315/227/5/052049
  • Arun, Y., Daifa, M., & Domb, A. J. (2021). Polyhydroxamic acid as an efficient metal chelator and flocculant for wastewater treatment. Polymers for Advanced Technologies, 32(2), 842-852. https://doi.org/10.1002/pat.5135
  • Bakar, A. F. A., & Halim, A. A. (2013). Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum). In AIP conference proceedings, 1571(1), 524-529. https://doi.org/10.1063/1.4858708
  • Hoffland Environmental (2020). https://heienv.com/hydroxide-precipitation-of-metals/#:~;:text=It%20is%20common%20to%20utilize.9.5%20to%20precipitate%20both%20metals
  • Nguyen, M. K., Pham, T. T., Pham, H. G., Hoang, B. L., Nguyen, T. H., Nguyen, T. H., ... & Ngo, H. H. (2021). Fenton/ozone-based oxidation and coagulation processes for removing metals (Cu, Ni)-EDTA from plating wastewater. Journal of Water Process Engineering, 39, 101836. https://doi.org/10.1016/j.jwpe.2020.101836
  • Yüksekdağ, M., Gökpınar, S., & Yelmen, B. (2020). Atıksu Arıtma Tesislerinde Arıtma Çamurları ve Bertaraf Uygulamaları. Avrupa Bilim ve Teknoloji Dergisi, (18), 895-904. https://doi.org/10.31590/ejosat.699952
  • Spinosa, L. & Vesilind, P. A. (2001). Sludge into biosolids. IWA Publishing.
  • Cevik, A. (2017). Atık su arıtma çamuru susuzlaştırma kurutma ve yakmada kullanılan yöntem ve ekipmanlar.
Year 2024, , 427 - 435, 28.07.2024
https://doi.org/10.31127/tuje.1406437

Abstract

References

  • Palansooriya, K. N., Yang, Y., Tsang, Y. F., Sarkar, B., Hou, D., Cao, X., ... & Ok, Y. S. (2020). Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Critical Reviews in Environmental Science and Technology, 50(6), 549-611. https://doi.org/10.1080/10643389.2019.1629803
  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17, 145-155. https://doi.org/10.1007/s10311-018-0785-9
  • Karakas, I., Sam, S. B., Cetin, E., Dulekgurgen, E., & Yilmaz, G. (2020). Resource recovery from an aerobic granular sludge process treating domestic wastewater. Journal of Water Process Engineering, 34, 101148. https://doi.org/10.1016/j.jwpe.2020.101148
  • Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., & Guerrero, V. H. (2021). Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504
  • Yati, I., Kizil, S., & Bulbul Sonmez, H. (2019). Cellulose-based hydrogels for water treatment. In Cellulose-Based Superabsorbent Hydrogels, 1015-1037. Springer, Cham.
  • Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0
  • Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., ... & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688. https://doi.org/10.1016/j.jece.2021.105688
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6
  • Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., & Yao, X. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, e00925. https://doi.org/10.1016/j.gecco.2020.e00925
  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
  • Zhu, Y., Fan, W., Zhou, T., & Li, X. (2019). Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of the Total Environment, 678, 253-266. https://doi.org/10.1016/j.scitotenv.2019.04.416
  • Nguyen, M. K., Pham, T. T., Pham, H. G., Hoang, B. L., Nguyen, T. H., Nguyen, T. H., ... & Ngo, H. H. (2021). Fenton/ozone-based oxidation and coagulation processes for removing metals (Cu, Ni)-EDTA from plating wastewater. Journal of Water Process Engineering, 39, 101836. https://doi.org/10.1016/j.jwpe.2020.101836
  • Hosseini, S. S., Bringas, E., Tan, N. R., Ortiz, I., Ghahramani, M., & Shahmirzadi, M. A. A. (2016). Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review. Journal of Water Process Engineering, 9, 78-110. https://doi.org/10.1016/j.jwpe.2015.11.005
  • Katsumata, H., Kaneco, S., Inomata, K., Itoh, K., Funasaka, K., Masuyama, K., ... & Ohta, K. (2003). Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. Journal of Environmental Management, 69(2), 187-191. https://doi.org/10.1016/S0301-4797(03)00145-2
  • Kurniawan, T. A., Chan, G. Y., Lo, W. H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1-2), 83-98. https://doi.org/10.1016/j.cej.2006.01.015
  • Hosseini, S. S., Bringas, E., Tan, N. R., Ortiz, I., Ghahramani, M., & Shahmirzadi, M. A. A. (2016). Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review. Journal of Water Process Engineering, 9, 78-110. https://doi.org/10.1016/j.jwpe.2015.11.005
  • Oden, M. K., & Sari-Erkan, H. (2018). Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance. Process Safety and Environmental Protection, 119, 207-217. https://doi.org/10.1016/j.psep.2018.08.001
  • Akbal, F., & Camcı, S. (2012). Treatment of metal plating wastewater by electrocoagulation. Environmental Progress & Sustainable Energy, 31(3), 340-350. https://doi.org/10.1002/ep.10546
  • Zoungrana, A., Çakmakci, M., Zengin, İ. H., İnoğlu, Ö., & Elcik, H. (2016). Treatment of metal-plating waste water by modified direct contact membrane distillation. Chemical Papers, 70(9), 1185-1195. https://doi.org/10.1515/chempap-2016-0066
  • Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology, 49, 252-260. https://doi.org/10.1016/j.jtemb.2018.02.009
  • Kumar, A., Kumar, A., MMS, C. P., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., ... & Yadav, K. K. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7), 2179. https://doi.org/10.3390/ijerph17072179
  • Witkowska, D., Słowik, J., & Chilicka, K. (2021). Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules, 26(19), 6060. https://doi.org/10.3390/molecules26196060
  • Kesari, K. K., Soni, R., Jamal, Q. M. S., Tripathi, P., Lal, J. A., Jha, N. K., ... & Ruokolainen, J. (2021). Wastewater treatment and reuse: a review of its applications and health implications. Water, Air, & Soil Pollution, 232, 1-28. https://doi.org/10.1007/s11270-021-05154-8
  • Hunsom, M., Pruksathorn, K., Damronglerd, S., Vergnes, H., & Duverneuil, P. (2005). Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Research, 39(4), 610-616. https://doi.org/10.1016/j.watres.2004.10.011
  • Ilhan, F., Ulucan-Altuntas, K., Avsar, Y., Kurt, U., & Saral, A. (2019). Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption. Frontiers of Environmental Science & Engineering, 13, 1-8. https://doi.org/10.1007/s11783-019-1152-1
  • Baskar, A. V., Bolan, N., Hoang, S. A., Sooriyakumar, P., Kumar, M., Singh, L., ... & Siddique, K. H. (2022). Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Science of the Total Environment, 822, 153555. https://doi.org/10.1016/j.scitotenv.2022.153555
  • Kaur, J., Sengupta, P., & Mukhopadhyay, S. (2022). Critical review of bioadsorption on modified cellulose and removal of divalent heavy metals (Cd, Pb, and Cu). Industrial & Engineering Chemistry Research, 61(5), 1921-1954. https://doi.org/10.1021/acs.iecr.1c04583
  • Braga, W. L. M., Roberto, J. A., Vaz, C., Samanamud, G. R. L., Loures, C. C. A., Franca, A. B., ... & Naves, F. L. (2018). Extraction and optimization of tannin from the flower of Musa sp. applied to the treatment of iron ore dump. Journal of Environmental Chemical Engineering, 6(4), 4310-4317. https://doi.org/10.1016/j.jece.2018.05.058
  • El Gaayda, J., Rachid, Y., Titchou, F. E., Barra, I., Hsini, A., Yap, P. S., ... & Akbour, R. A. (2023). Optimizing removal of chromium (VI) ions from water by coagulation process using central composite design: Effectiveness of grape seed as a green coagulant. Separation and Purification Technology, 307, 122805. https://doi.org/10.1016/j.seppur.2022.122805
  • Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., ... & Shi, Y. (2017). Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere, 173, 199-206. https://doi.org/10.1016/j.chemosphere.2016.12.137
  • Chang, S., Ahmad, R., Kwon, D. E., & Kim, J. (2020). Hybrid ceramic membrane reactor combined with fluidized adsorbents and scouring agents for hazardous metal-plating wastewater treatment. Journal of Hazardous Materials, 388, 121777. https://doi.org/10.1016/j.jhazmat.2019.121777
  • Agridiotis, V., Forster, C. F., & Carliell-Marquet, C. (2007). Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics. Bioresource Technology, 98(15), 2926-2934. https://doi.org/10.1016/j.biortech.2006.10.004
  • Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., & Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, 749-756. https://doi.org/10.1016/j.cej.2014.09.035
  • Sinha, S., Yoon, Y., Amy, G., & Yoon, J. (2004). Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes. Chemosphere, 57(9), 1115-1122. https://doi.org/10.1016/j.chemosphere.2004.08.012
  • Inam, M. A., Khan, R., Akram, M., Khan, S., Park, D. R., & Yeom, I. T. (2019). Interaction of arsenic species with organic ligands: Competitive removal from water by coagulation-flocculation-sedimentation (C/F/S). Molecules, 24(8), 1619. https://doi.org/10.3390/molecules24081619
  • Folens, K., Huysman, S., Van Hulle, S., & Du Laing, G. (2017). Chemical and economic optimization of the coagulation-flocculation process for silver removal and recovery from industrial wastewater. Separation and Purification Technology, 179, 145-151. https://doi.org/10.1016/j.seppur.2017.02.013
  • Zhao, C., Shao, S., Zhou, Y., Yang, Y., Shao, Y., Zhang, L., ... & Luo, L. (2018). Optimization of flocculation conditions for soluble cadmium removal using the composite flocculant of green anion polyacrylamide and PAC by response surface methodology. Science of the Total Environment, 645, 267-276. https://doi.org/10.1016/j.scitotenv.2018.07.070
  • Sun, Y., Chen, A., Pan, S. Y., Sun, W., Zhu, C., Shah, K. J., & Zheng, H. (2019). Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation. Journal of Environmental Management, 248, 109241. https://doi.org/10.1016/j.jenvman.2019.07.012
  • Yang, K., Wang, G., Chen, X., Wang, X., & Liu, F. (2018). Treatment of wastewater containing Cu2+ using a novel macromolecular heavy metal chelating flocculant xanthated chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 558, 384-391. https://doi.org/10.1016/j.colsurfa.2018.06.082
  • El Gaayda, J., Rachid, Y., Titchou, F. E., Barra, I., Hsini, A., Yap, P. S., ... & Akbour, R. A. (2023). Optimizing removal of chromium (VI) ions from water by coagulation process using central composite design: Effectiveness of grape seed as a green coagulant. Separation and Purification Technology, 307, 122805. https://doi.org/10.1016/j.seppur.2022.122805
  • Kılıç, M. Y., & Kumbasar, P. (2023). Çinko-nikel alaşım kaplama atıksularının kimyasal arıtabilirliğinin araştırılması. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 307-316. https://doi.org/10.17482/uumfd.1249112
  • DOSAB (2019). DOSAB Atıksu Altyapı Yönetim Talimatı 2019.
  • Baird, R., Rice, E., & Eaton, A. (2017). Standard methods for the examination of water and wastewaters. Water Environment Federation, Chair Eugene W. Rice, American Public Health Association Andrew D. Eaton, American Water Works Association.
  • Öztel, M. D., Kuleyin, A., & Akbal, F. (2020). Treatment of zinc plating wastewater by combination of electrocoagulation and ultrafiltration process. Water Science and Technology, 82(4), 663-672. https://doi.org/10.2166/wst.2020.357
  • Yatim, S. R. M., Zainuddin, N. A., Mokhtar, N. S., Syahjidan, H. N., & Kamsuri, S. N. H. (2021, February). Competitiveness in removing copper, zinc and chromium trivalent in plating industrial effluent by using hydroxide precipitation versus sulphide precipitation. In IOP Conference Series: Materials Science and Engineering, 1053(1), 012084. https://doi.org/10.1088/1757-899X/1053/1/012084
  • Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., & Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, 749-756. https://doi.org/10.1016/j.cej.2014.09.035
  • Yatim, S. R. M., Zainuddin, N. A., Mokhtar, N. S., Syahjidan, H. N., & Kamsuri, S. N. H. (2021). Competitiveness in removing copper, zinc and chromium trivalent in plating industrial effluent by using hydroxide precipitation versus sulphide precipitation. In IOP Conference Series: Materials Science and Engineering, 1053(1), 012084. https://doi.org/10.1088/1757-899X/1053/1/012084
  • Xu, D., Zhou, B., & Yuan, R. (2019). Optimization of coagulation-flocculation treatment of wastewater containing Zn (II) and Cr (VI). In IOP Conference Series: Earth and Environmental Science, 227, 052049. https://doi.org/10.1088/1755-1315/227/5/052049
  • Arun, Y., Daifa, M., & Domb, A. J. (2021). Polyhydroxamic acid as an efficient metal chelator and flocculant for wastewater treatment. Polymers for Advanced Technologies, 32(2), 842-852. https://doi.org/10.1002/pat.5135
  • Bakar, A. F. A., & Halim, A. A. (2013). Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum). In AIP conference proceedings, 1571(1), 524-529. https://doi.org/10.1063/1.4858708
  • Hoffland Environmental (2020). https://heienv.com/hydroxide-precipitation-of-metals/#:~;:text=It%20is%20common%20to%20utilize.9.5%20to%20precipitate%20both%20metals
  • Nguyen, M. K., Pham, T. T., Pham, H. G., Hoang, B. L., Nguyen, T. H., Nguyen, T. H., ... & Ngo, H. H. (2021). Fenton/ozone-based oxidation and coagulation processes for removing metals (Cu, Ni)-EDTA from plating wastewater. Journal of Water Process Engineering, 39, 101836. https://doi.org/10.1016/j.jwpe.2020.101836
  • Yüksekdağ, M., Gökpınar, S., & Yelmen, B. (2020). Atıksu Arıtma Tesislerinde Arıtma Çamurları ve Bertaraf Uygulamaları. Avrupa Bilim ve Teknoloji Dergisi, (18), 895-904. https://doi.org/10.31590/ejosat.699952
  • Spinosa, L. & Vesilind, P. A. (2001). Sludge into biosolids. IWA Publishing.
  • Cevik, A. (2017). Atık su arıtma çamuru susuzlaştırma kurutma ve yakmada kullanılan yöntem ve ekipmanlar.
There are 55 citations in total.

Details

Primary Language English
Subjects Environmental Engineering (Other)
Journal Section Articles
Authors

İnci Karakaş 0000-0002-3590-3395

Soner Kızıl 0000-0003-3405-1212

Early Pub Date July 5, 2024
Publication Date July 28, 2024
Submission Date December 18, 2023
Acceptance Date January 18, 2024
Published in Issue Year 2024

Cite

APA Karakaş, İ., & Kızıl, S. (2024). A critical study on the treatability of metal plating industry wastewater and real scale adaptation. Turkish Journal of Engineering, 8(3), 427-435. https://doi.org/10.31127/tuje.1406437
AMA Karakaş İ, Kızıl S. A critical study on the treatability of metal plating industry wastewater and real scale adaptation. TUJE. July 2024;8(3):427-435. doi:10.31127/tuje.1406437
Chicago Karakaş, İnci, and Soner Kızıl. “A Critical Study on the Treatability of Metal Plating Industry Wastewater and Real Scale Adaptation”. Turkish Journal of Engineering 8, no. 3 (July 2024): 427-35. https://doi.org/10.31127/tuje.1406437.
EndNote Karakaş İ, Kızıl S (July 1, 2024) A critical study on the treatability of metal plating industry wastewater and real scale adaptation. Turkish Journal of Engineering 8 3 427–435.
IEEE İ. Karakaş and S. Kızıl, “A critical study on the treatability of metal plating industry wastewater and real scale adaptation”, TUJE, vol. 8, no. 3, pp. 427–435, 2024, doi: 10.31127/tuje.1406437.
ISNAD Karakaş, İnci - Kızıl, Soner. “A Critical Study on the Treatability of Metal Plating Industry Wastewater and Real Scale Adaptation”. Turkish Journal of Engineering 8/3 (July 2024), 427-435. https://doi.org/10.31127/tuje.1406437.
JAMA Karakaş İ, Kızıl S. A critical study on the treatability of metal plating industry wastewater and real scale adaptation. TUJE. 2024;8:427–435.
MLA Karakaş, İnci and Soner Kızıl. “A Critical Study on the Treatability of Metal Plating Industry Wastewater and Real Scale Adaptation”. Turkish Journal of Engineering, vol. 8, no. 3, 2024, pp. 427-35, doi:10.31127/tuje.1406437.
Vancouver Karakaş İ, Kızıl S. A critical study on the treatability of metal plating industry wastewater and real scale adaptation. TUJE. 2024;8(3):427-35.
Flag Counter