Research Article
BibTex RIS Cite

Effective adsorption of malachite green with silica gel supported iron-zinc bimetallic nanoparticles

Year 2024, , 510 - 523, 28.07.2024
https://doi.org/10.31127/tuje.1413970

Abstract

In the present study, a composite material consisting of silica gel 60 supported iron-zinc bimetallic nanoparticles (Si/Fe-ZnNPs) was prepared and characterized by SEM, EDX, FTIR, and XRD analysis. The adsorbent properties of the synthesized composite material were evaluated with the removal of Malachite Green (MG). According to characterization results, the cubic structures and agglomerated nano-sized spherical particles (≈30 nm) were formed. The FT-IR spectrum confirms the formation of Fe-Zn NPs through the observation of the Fe-O stretches and metal-metal stretching vibrations of (Zn2+ – O2ˉ) adsorption bands. Additionally, the FT-IR revealed the presence of Si-O-Si, Si-O-H stretching, and O-Si-O bending vibrations attributed to silica gel 60. The optimal environmental conditions for adsorption were determined to be a natural pH of 3.3, an adsorption temperature of 50°C, and an adsorbent concentration of 1.0 g/L. An increase in equilibrium uptakes of MG was observed with a linear correlation to initial dye concentrations. Thermodynamic studies indicated that the adsorption process was endothermic, non-spontaneous, and increasing disorder at the solid-solution interface during adsorption with positive ΔH, ΔG, and ΔS values, respectively. The experimental results revealed that the Langmuir isotherm model provided the best fit for the equilibrium data. The maximum monolayer coverage capacity of Si/Fe-ZnNPs was 666.67 mg/g at an optimum temperature of 50°C. Further analysis displayed that the kinetic adsorption data adhere to the pseudo-second-order kinetic model. Additionally, Weber-Morris model results revealed the effectiveness of both the film and intra-particle diffusion in the adsorption.

Project Number

-

References

  • Rathi, B. S., & Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental pollution (Barking, Essex: 1987), 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995
  • Ahmad, H. R., Aziz, T., Zia-ur-Rehman, M., Sabir, M., & Khalid, H. (2016). Sources and composition of waste water: Threats to plants and soil health. In Soil Science: Agricultural and Environmental Prospectives (349–370). Springer International Publishing. https://doi.org/10.1007/978-3-319-34451-5_16
  • Senthil Kumar, P., Joshiba, G. J., Femina, C. C., Varshini, P., Priyadharshini, S., Arun Karthick, M. S., & Jothirani, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination And Water Treatment, 172, 395–416. https://doi.org/10.5004/dwt.2019.24613
  • Ahmouda, K., Boudiaf, M., & Benhaoua, B. (2022). A novel study on the preferential attachment of chromophore and auxochrome groups in azo dye adsorption on different greenly synthesized magnetite nanoparticles: investigation of the influence of the mediating plant extract’s acidity. Nanoscale Advances, 4(15),3250–3271. https://doi.org/10.1039/d2na00302c
  • Oruç, Z., Ergüt, M., Uzunoğlu, D., & Özer, A. (2019). Green synthesis of biomass-derived activated carbon/Fe-Zn bimetallic nanoparticles from lemon (Citrus limon (L.) Burm. f.) wastes for heterogeneous Fenton-like decolorization of Reactive Red 2. Journal of Environmental Chemical Engineering, 7(4), 103231. https://doi.org/10.1016/j.jece.2019.103231
  • Swan, N. B., & Zaini, M. A. A. (2019). Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook. Ecological Chemistry and Engineering S, 26(1), 119–132. https://doi.org/10.1515/eces-2019-0009
  • M. Nahiun, K., Sarker, B., N. Keya, K., I. Mahir, F., Shahida, S., & A. Khan, R. (2021). A Review on the Methods of Industrial Waste Water Treatment. Scientific Review, 7(73), 20–31. https://doi.org/10.32861/sr.73.20.31
  • Tulun, Ş., Bahadir, T., Şimşek, İ., & Karataş, M. (2019). The removal of nickel ions with walnut shell. Turkish Journal of Engineering, 3(2), 102-105. https://doi.org/10.31127/tuje.456741
  • Sharma, G., Kumar, A., Sharma, S., Naushad, M., Prakash Dwivedi, R., ALOthman, Z. A., & Mola, G. T. (2019). Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. Journal of King Saud University - Science, 31(2), 257–269. https://doi.org/10.1016/j.jksus.2017.06.012
  • Scaria, J., Nidheesh, P. V, & Kumar, M. S. (2020). Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. Journal of Environmental Management, 259,110011. https://doi.org/10.1016/j.jenvman.2019.110011
  • Gautam, R. K., Rawat, V., Banerjee, S., Sanroman, M. A., Soni, S., Singh, S. K., & Chattopadhyaya, M. C. (2015). Synthesis of bimetallic Fe-Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. Journal of Molecular Liquids, 212, 227–236. https://doi.org/10.1016/j.molliq.2015.09.006
  • Kharissova, O. V, Dias, R., & Kharisov, B. I. (2015). Magnetic adsorbents on the basis of micro- and nanostructurized materials. RSC Advances, 5, 6695–6719.
  • Chen, Z. X., Cheng, Y., Chen, Z., Megharaj, M., & Naidu, R. (2014). Kaolin-supported nanoscale zero-valent iron for removing cationic dye–crystal violet in aqueous solution. In Nanotechnology for Sustainable Development, First Edition, 189–196. https://doi.org/10.1007/978-3-319-05041-6_15
  • Hamdy, A., Mostafa, M. K., & Nasr, M. (2018). Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water Science and Technology, 78(2), 367–378. https://doi.org/10.2166/wst.2018.306
  • Sahu, N., Rawat, S., Singh, J., Karri, R. R., Lee, S., Choi, J.-S., & Koduru, J. R. (2019). Process Optimization and Modeling of Methylene Blue Adsorption Using Zero-Valent Iron Nanoparticles Synthesized from Sweet Lime Pulp. Applied Sciences, 9(23), 5112. https://doi.org/10.3390/app9235112
  • Naser, R., & Shahwan, T. (2019). Comparative assessment of the decolorization of aqueous bromophenol blue using Fe nanoparticles and Fe-Ni bimetallic nanoparticles. Desalination and Water Treatment, 159, 346-355. https://doi.org/10.5004/dwt.2019.24136
  • Alruqi, S. S., AL-Thabaiti, S. A., & Khan, Z. (2019). Iron-nickel bimetallic nanoparticles: Surfactant assisted synthesis and their catalytic activities. Journal of Molecular Liquids, 282, 448–455. https://doi.org/10.1016/j.molliq.2019.03.021
  • Bokare, A. D., Chikate, R. C., Rode, C. V., & Paknikar, K. M. (2008). Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Applied Catalysis B: Environmental, 79(3), 270–278. https://doi.org/10.1016/j.apcatb.2007.10.033
  • Tahir, H., Saad, M., Attala, O. A., El-Saoud, W. A., Attia, K. A., Jabeen, S., & Zeb, J. (2023). Sustainable Synthesis of Iron–Zinc Nanocomposites by Azadirachta indica Leaves Extract for RSM-Optimized Sono-Adsorptive Removal of Crystal Violet Dye. Materials, 16(3), 1023. https://doi.org/10.3390/ma16031023
  • Ulucan-Altuntas, K., & Kuzu, S. L. (2019). Modelling and optimization of dye removal by Fe/Cu bimetallic nanoparticles coated with different Cu ratios. Materials Research Express, 6(11), 1150a4. https://doi.org/10.1088/2053-1591/ab4bb5
  • Mahmoud, A. S., Mostafa, M. K., & Peters, R. W. (2021). A prototype of textile wastewater treatment using coagulation and adsorption by Fe/Cu nanoparticles: Techno-economic and scaling-up studies. Nanomaterials and Nanotechnology, 11, 18479804211041181.https://doi.org/10.1177/18479804211041181
  • Raman, C. D., & Kanmani, S. (2016). Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management, 177, 341–355. https://doi.org/10.1016/j.jenvman.2016.04.034
  • Bhattacharya, S., Saha, I., Mukhopadhyay, A., Chattopadhyay, D., & Chand, U. (2013). Role of nanotechnology in water treatment and purification: Potential applications and implications. International Journal of Chemical Science and Technology, 3(3), 59–64.
  • Kharisov, B. I., Dias, H. R., Kharissova, O. V., Jiménez-Pérez, V. M., Pérez, B. O., & Flores, B. M. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. Rsc Advances, 2(25), 9325-9358.
  • Abdelrahman, E. A. (2018). Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. Journal of Molecular Liquids, 253, 72–82. https://doi.org/10.1016/j.molliq.2018.01.038
  • Maher, H., Rupam, T. H., Rocky, K. A., Bassiouny, R., & Saha, B. B. (2022). Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester. Energy, 238, 121741. https://doi.org/10.1016/j.energy.2021.121741
  • Boukoussa, B., Mokhtar, A., El Guerdaoui, A., Hachemaoui, M., Ouachtak, H., Abdelkrim, S., Addi Ait, A., Babou, S., Boudina, B., Bengueddach, A., Hamacha, R. (2021). Adsorption behavior of cationic dye on mesoporous silica SBA-15 carried by calcium alginate beads: Experimental and molecular dynamics study. Journal of Molecular Liquids, 333, 115976. https://doi.org/10.1016/j.molliq.2021.115976
  • Volikov, A. B., Ponomarenko, S. A., Konstantinov, A. I., Hatfield, K., & Perminova, I. V. (2016). Nature-like solution for removal of direct brown 1 azo dye from aqueous phase using humics-modified silica gel. Chemosphere, 145, 83–88. https://doi.org/10.1016/j.chemosphere.2015.11.070
  • Patra, A. S., Ghorai, S., Sarkar, D., Das, R., Sarkar, S., & Pal, S. (2017). Anionically functionalized guar gum embedded with silica nanoparticles: An efficient nanocomposite adsorbent for rapid adsorptive removal of toxic cationic dyes and metal ions. Bioresource Technology, 225, 367–376. https://doi.org/10.1016/j.biortech.2016.11.093
  • Zhang, Y., Xia, K., Liu, X., Chen, Z., Du, H., & Zhang, X. (2019). Synthesis of cationic-modified silica gel and its adsorption properties for anionic dyes. Journal of the Taiwan Institute of Chemical Engineers, 102, 1–8. https://doi.org/10.1016/j.jtice.2019.05.005
  • Samiey, B., & Toosi, A. R. (2010). Adsorption of malachite green on silica gel: effects of NaCl, pH and 2-propanol. Journal of hazardous materials, 184(1–3), 739–745. https://doi.org/10.1016/j.jhazmat.2010.08.101
  • Mansa, R. F., Sipaut, C. S., Rahman, I. A., Yusof, N. S. M., & Jafarzadeh, M. (2016). Preparation of glycine–modified silica nanoparticles for the adsorption of malachite green dye. Journal of Porous Materials, 23(1), 35–46. https://doi.org/10.1007/s10934-015-0053-3
  • Hassan-Zadeh, B., Rahmanian, R., Salmani, M. H., & Salmani, M. J. (2021). Functionalization of Synthesized Nanoporous Silica and Its Application in Malachite Green Removal from Contaminated Water. Journal of Environmental Health and Sustainable Development, 6(2), 1311–1320. https://doi.org/10.18502/jehsd.v6i2.6542
  • Hossain, M. A., Hossain, M. L., & Hassan, T. Al. (2016). Equilibrium, Thermodynamic and Mechanism Studies of Malachite Green Adsorption on Used Black Tea Leaves from Acidic Solution. International Letters of Chemistry, Physics and Astronomy, 64(2018), 77–88. https://doi.org/10.56431/p-c20qfs
  • Kaya, M., Zahmakiran, M., Özkar, S., & Volkan, M. (2012). Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: Cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance. ACS Applied Materials and Interfaces, 4(8), 3866–3873. https://doi.org/10.1021/am3005994
  • Wang, J., Liu, C., Hussain, I., Li, C., Li, J., Sun, X., Shen, J., Han, W., Wang, L. (2016). Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: The effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye. RSC Advances, 6(59), 54623–54635. https://doi.org/10.1039/c6ra08501f
  • Huo, Y., Ding, W., Huang, X., Xu, J., & Zhao, M. (2011). Fluoride removal by lanthanum alginate bead: Adsorbent characterization and adsorption mechanism. Chinese Journal of Chemical Engineering, 19(3), 365–370. https://doi.org/10.1016/S1004-9541(09)60222-6
  • Kumar, A., Rana, A., Sharma, G., Naushad, M., Dhiman, P., Kumari, A., & Stadler, F. J. (2019). Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. Journal of Molecular Liquids, 290, 111177. https://doi.org/10.1016/j.molliq.2019.111177
  • Sun, S., Yang, X., Zhang, Y., Zhang, F., Ding, J., Bao, J., & Gao, C. (2012). Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Progress in Natural Science: Materials International, 22(6), 639–643. https://doi.org/10.1016/j.pnsc.2012.11.008
  • Ullah, R., Deb, B. K., Yousuf, M., & Mollah, A. (2014). Synthesis and Characterization of Silica Coated Iron-Oxide Composites of Different Ratios. International Journal of Composite Materials, 4(2), 135–145. https://doi.org/10.5923/j.cmaterials.20140402.13
  • Yu, J., Jin, J., Cheng, B., & Jaroniec, M. (2014). A noble metal-free reduced graphene oxide-cds nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. Journal of Materials Chemistry A, 2(10), 3407–3416. https://doi.org/10.1039/c3ta14493c
  • Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B. H. (2019). Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using: Papaver somniferum L. RSC Advances, 9(51), 29541–29548. https://doi.org/10.1039/c9ra04424h
  • Yedurkar, S., Maurya, C., & Mahanwar, P. (2016). Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach. Open Journal of Synthesis Theory and Applications, 05(01), 1–14. https://doi.org/10.4236/ojsta.2016.51001
  • Wang, P., Wang, X., Yu, S., Zou, Y., Wang, J., Chen, Z., Alharbi, S. N., Alsaedi, A., Hayat, T., Chen, Y., & Wang, X. (2016). Silica coated Fe 3 O 4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chemical Engineering Journal, 306, 280–288. https://doi.org/10.1016/j.cej.2016.07.068
  • Konicki, W., Sibera, D., Mijowska, E., Lendzion-Bieluń, Z., & Narkiewicz, U. (2013). Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. Journal of colloid and interface science, 398, 152–60. https://doi.org/10.1016/j.jcis.2013.02.021
  • Kragović, M., Stojmenović, M., Petrović, J., Loredo, J., Pašalić, S., Nedeljković, A., & Ristović, I. (2019). Influence of Alginate Encapsulation on Point of Zero Charge (pHpzc) and Thermodynamic Properties of the Natural and Fe(III) - Modified Zeolite. Procedia Manufacturing, 32, 286–293. https://doi.org/10.1016/j.promfg.2019.02.216
  • Banerjee, S., & Chattopadhyaya, M. C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10, S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005
  • Musa, M., Hasan, H., Malkoç, H., Ergüt, M., Uzunoğlu, D., & Özer, A. (2020). Effective adsorption of tetracycline with Co3O4/Fe3O4 bimetallic nanoparticles. Turkish Journal of Engineering, 4(4), 209-217. https://doi.org/10.31127/tuje.648882
  • Meena, A. K., Kadirvelu, K., Mishraa, G. K., Rajagopal, C., & Nagar, P. N. (2008). Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. Journal of Hazardous Materials, 150(3), 619–625. https://doi.org/10.1016/j.jhazmat.2007.05.011
  • Eltaweil, A. S., Ali Mohamed, H., Abd El-Monaem, E. M., & El-Subruiti, G. M. (2020). Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Advanced Powder Technology, 31(3), 1253–1263. https://doi.org/10.1016/j.apt.2020.01.005
  • Chinthalapudi, N., Kommaraju, V. V. D., Kannan, M. K., Nalluri, C. B., & Varanasi, S. (2021). Composites of cellulose nanofibers and silver nanoparticles for malachite green dye removal from water. Carbohydrate Polymer Technologies and Applications, 2, 100098. https://doi.org/10.1016/j.carpta.2021.100098
  • Sarojini, G., Venkatesh Babu, S., Rajamohan, N., & Rajasimman, M. (2022). Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. Environmental Research, 204, 112132. https://doi.org/10.1016/j.envres.2021.112132
  • Hojjati-Najafabadi, A., Nasr Esfahani, P., Davar, F., Aminabhavi, T. M., & Vasseghian, Y. (2023). Adsorptive removal of malachite green using novel GO@ZnO-NiFe2O4-αAl2O3 nanocomposites. Chemical Engineering Journal, 471(May), 144485. https://doi.org/10.1016/j.cej.2023.144485
  • Hashem, A. A., Mahmoud, S. A., Geioushy, R. A., & Fouad, O. A. (2023). Adsorption of malachite green dye over synthesized calcium silicate nanopowders from waste materials. Materials Science and Engineering: B, 295(December 2022), 116605. https://doi.org/10.1016/j.mseb.2023.116605
  • Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, H. R., Asif, M., Tyagi, I., Agarwal, S., Gupta, V. K. (2016). Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. Journal of Industrial and Engineering Chemistry, 34, 130–138. https://doi.org/10.1016/j.jiec.2015.11.001
  • Haounati, R., Ouachtak, H., El Haouti, R., Akhouairi, S., Largo, F., Akbal, F., Benlhachemi, A., Jada, A., Addi, A. A. (2021). Elaboration and properties of a new SDS/CTAB@Montmorillonite organoclay composite as a superb adsorbent for the removal of malachite green from aqueous solutions. Separation and Purification Technology, 255(2020), 117335. https://doi.org/10.1016/j.seppur.2020.117335
  • Li, X. Y., Wang, W. R., Xue, R. C., Chen, P. Y., Wang, Y., & Yu, L. P. (2023). Carbon dots/silica nanoaggregates for highly efficient adsorption of alizarin red S and malachite green dyes. New Journal of Chemistry, 47(18), 8965–8973. https://doi.org/10.1039/d3nj01273e
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004
  • Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57U(1), 385–470. https://doi.org/10.1515/zpch-1907-5723
  • You, X., Zhou, R., Zhu, Y., Bu, D., & Cheng, D. (2022). Adsorption of dyes methyl violet and malachite green from aqueous solution on multi-step modified rice husk powder in single and binary systems: Characterization, adsorption behavior and physical interpretations. Journal of Hazardous Materials, 430, 128445. https://doi.org/10.1016/j.jhazmat.2022.128445
  • Wang, D., Liu, L., Jiang, X., Yu, J., & Chen, X. (2015). Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466, 166–173. https://doi.org/10.1016/j.colsurfa.2014.11.021
  • Vergis, B. R., Hari Krishna, R., Kottam, N., Nagabhushana, B. M., Sharath, R., & Darukaprasad, B. (2018). Removal of malachite green from aqueous solution by magnetic CuFe2O4 nano-adsorbent synthesized by one pot solution combustion method. Journal of Nanostructure in Chemistry, 8(1), 1–12. https://doi.org/10.1007/s40097-017-0249-y
  • Dastkhoon, M., Ghaedi, M., Asfaram, A., Goudarzi, A., Langroodi, S. M., Tyagi, I., Agarwall, S., & Gupta, V. K. (2015). Ultrasound assisted adsorption of malachite green dye onto ZnS:Cu-NP-AC: Equilibrium isotherms and kinetic studies - Response surface optimization. Separation and Purification Technology, 156, 780–788. https://doi.org/10.1016/j.seppur.2015.11.001
  • Chen, H., Liu, T., Meng, Y., Cheng, Y., Lu, J., & Wang, H. (2020). Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125281. https://doi.org/10.1016/j.colsurfa.2020.125281
  • Tanyol, M. (2017). Rapid malachite green removal from aqueous solution by natural zeolite: Process optimization by response surface methodology. Desalination and Water Treatment, 65, 294–303. https://doi.org/10.5004/dwt.2017.20185
  • Hameed, B. H., & El-Khaiary, M. I. (2008). Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159(2–3), 574–579. https://doi.org/10.1016/j.jhazmat.2008.02.054
  • Sadegh, H., Shahryari-Ghoshekandi, R., Agarwal, S., Tyagi, I., Asif, M., & Gupta, V. K. (2015). Microwave-assisted removal of malachite green by carboxylate functionalized multi-walled carbon nanotubes: Kinetics and equilibrium study. Journal of Molecular Liquids, 206, 151–158. https://doi.org/10.1016/j.molliq.2015.02.007
  • Mohammadi, A., Daemi, H., & Barikani, M. (2014). Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. International Journal of Biological Macromolecules, 69, 447–455. https://doi.org/10.1016/j.ijbiomac.2014.05.042
  • Ali, H., & Ismail, A. M. (2021). Developing montmorillonite/PVDF/PEO microporous membranes for removal of malachite green: adsorption, isotherms, and kinetics. Journal of Polymer Research, 28(11), 429. https://doi.org/10.1007/s10965-021-02789-3
  • Ghaedi, M., Azad, F. N., Dashtian, K., Hajati, S., Goudarzi, A., & Soylak, M. (2016). Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 167, 157–164. https://doi.org/10.1016/j.saa.2016.05.025
  • Lagergren, S. K. (1898). About the Theory of So-called Adsorption of Soluble Substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.
  • Ho, Y. S., & McKay, G. (2004). Sorption of copper(II) from aqueous solution by Peat. Water, Air, and Soil Pollution, 158(1), 77–97. https://doi.org/10.1023/B:WATE.0000044830.63767.a3
  • Weber, W. J., & Morris, J. C. (1963). Closure to “Kinetics of Adsorption on Carbon from Solution”. Journal of the Sanitary Engineering Division, 89(6), 53–55. https://doi.org/10.1061/jsedai.0000467
Year 2024, , 510 - 523, 28.07.2024
https://doi.org/10.31127/tuje.1413970

Abstract

Project Number

-

References

  • Rathi, B. S., & Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental pollution (Barking, Essex: 1987), 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995
  • Ahmad, H. R., Aziz, T., Zia-ur-Rehman, M., Sabir, M., & Khalid, H. (2016). Sources and composition of waste water: Threats to plants and soil health. In Soil Science: Agricultural and Environmental Prospectives (349–370). Springer International Publishing. https://doi.org/10.1007/978-3-319-34451-5_16
  • Senthil Kumar, P., Joshiba, G. J., Femina, C. C., Varshini, P., Priyadharshini, S., Arun Karthick, M. S., & Jothirani, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination And Water Treatment, 172, 395–416. https://doi.org/10.5004/dwt.2019.24613
  • Ahmouda, K., Boudiaf, M., & Benhaoua, B. (2022). A novel study on the preferential attachment of chromophore and auxochrome groups in azo dye adsorption on different greenly synthesized magnetite nanoparticles: investigation of the influence of the mediating plant extract’s acidity. Nanoscale Advances, 4(15),3250–3271. https://doi.org/10.1039/d2na00302c
  • Oruç, Z., Ergüt, M., Uzunoğlu, D., & Özer, A. (2019). Green synthesis of biomass-derived activated carbon/Fe-Zn bimetallic nanoparticles from lemon (Citrus limon (L.) Burm. f.) wastes for heterogeneous Fenton-like decolorization of Reactive Red 2. Journal of Environmental Chemical Engineering, 7(4), 103231. https://doi.org/10.1016/j.jece.2019.103231
  • Swan, N. B., & Zaini, M. A. A. (2019). Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook. Ecological Chemistry and Engineering S, 26(1), 119–132. https://doi.org/10.1515/eces-2019-0009
  • M. Nahiun, K., Sarker, B., N. Keya, K., I. Mahir, F., Shahida, S., & A. Khan, R. (2021). A Review on the Methods of Industrial Waste Water Treatment. Scientific Review, 7(73), 20–31. https://doi.org/10.32861/sr.73.20.31
  • Tulun, Ş., Bahadir, T., Şimşek, İ., & Karataş, M. (2019). The removal of nickel ions with walnut shell. Turkish Journal of Engineering, 3(2), 102-105. https://doi.org/10.31127/tuje.456741
  • Sharma, G., Kumar, A., Sharma, S., Naushad, M., Prakash Dwivedi, R., ALOthman, Z. A., & Mola, G. T. (2019). Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. Journal of King Saud University - Science, 31(2), 257–269. https://doi.org/10.1016/j.jksus.2017.06.012
  • Scaria, J., Nidheesh, P. V, & Kumar, M. S. (2020). Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. Journal of Environmental Management, 259,110011. https://doi.org/10.1016/j.jenvman.2019.110011
  • Gautam, R. K., Rawat, V., Banerjee, S., Sanroman, M. A., Soni, S., Singh, S. K., & Chattopadhyaya, M. C. (2015). Synthesis of bimetallic Fe-Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. Journal of Molecular Liquids, 212, 227–236. https://doi.org/10.1016/j.molliq.2015.09.006
  • Kharissova, O. V, Dias, R., & Kharisov, B. I. (2015). Magnetic adsorbents on the basis of micro- and nanostructurized materials. RSC Advances, 5, 6695–6719.
  • Chen, Z. X., Cheng, Y., Chen, Z., Megharaj, M., & Naidu, R. (2014). Kaolin-supported nanoscale zero-valent iron for removing cationic dye–crystal violet in aqueous solution. In Nanotechnology for Sustainable Development, First Edition, 189–196. https://doi.org/10.1007/978-3-319-05041-6_15
  • Hamdy, A., Mostafa, M. K., & Nasr, M. (2018). Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water Science and Technology, 78(2), 367–378. https://doi.org/10.2166/wst.2018.306
  • Sahu, N., Rawat, S., Singh, J., Karri, R. R., Lee, S., Choi, J.-S., & Koduru, J. R. (2019). Process Optimization and Modeling of Methylene Blue Adsorption Using Zero-Valent Iron Nanoparticles Synthesized from Sweet Lime Pulp. Applied Sciences, 9(23), 5112. https://doi.org/10.3390/app9235112
  • Naser, R., & Shahwan, T. (2019). Comparative assessment of the decolorization of aqueous bromophenol blue using Fe nanoparticles and Fe-Ni bimetallic nanoparticles. Desalination and Water Treatment, 159, 346-355. https://doi.org/10.5004/dwt.2019.24136
  • Alruqi, S. S., AL-Thabaiti, S. A., & Khan, Z. (2019). Iron-nickel bimetallic nanoparticles: Surfactant assisted synthesis and their catalytic activities. Journal of Molecular Liquids, 282, 448–455. https://doi.org/10.1016/j.molliq.2019.03.021
  • Bokare, A. D., Chikate, R. C., Rode, C. V., & Paknikar, K. M. (2008). Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Applied Catalysis B: Environmental, 79(3), 270–278. https://doi.org/10.1016/j.apcatb.2007.10.033
  • Tahir, H., Saad, M., Attala, O. A., El-Saoud, W. A., Attia, K. A., Jabeen, S., & Zeb, J. (2023). Sustainable Synthesis of Iron–Zinc Nanocomposites by Azadirachta indica Leaves Extract for RSM-Optimized Sono-Adsorptive Removal of Crystal Violet Dye. Materials, 16(3), 1023. https://doi.org/10.3390/ma16031023
  • Ulucan-Altuntas, K., & Kuzu, S. L. (2019). Modelling and optimization of dye removal by Fe/Cu bimetallic nanoparticles coated with different Cu ratios. Materials Research Express, 6(11), 1150a4. https://doi.org/10.1088/2053-1591/ab4bb5
  • Mahmoud, A. S., Mostafa, M. K., & Peters, R. W. (2021). A prototype of textile wastewater treatment using coagulation and adsorption by Fe/Cu nanoparticles: Techno-economic and scaling-up studies. Nanomaterials and Nanotechnology, 11, 18479804211041181.https://doi.org/10.1177/18479804211041181
  • Raman, C. D., & Kanmani, S. (2016). Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management, 177, 341–355. https://doi.org/10.1016/j.jenvman.2016.04.034
  • Bhattacharya, S., Saha, I., Mukhopadhyay, A., Chattopadhyay, D., & Chand, U. (2013). Role of nanotechnology in water treatment and purification: Potential applications and implications. International Journal of Chemical Science and Technology, 3(3), 59–64.
  • Kharisov, B. I., Dias, H. R., Kharissova, O. V., Jiménez-Pérez, V. M., Pérez, B. O., & Flores, B. M. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. Rsc Advances, 2(25), 9325-9358.
  • Abdelrahman, E. A. (2018). Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. Journal of Molecular Liquids, 253, 72–82. https://doi.org/10.1016/j.molliq.2018.01.038
  • Maher, H., Rupam, T. H., Rocky, K. A., Bassiouny, R., & Saha, B. B. (2022). Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester. Energy, 238, 121741. https://doi.org/10.1016/j.energy.2021.121741
  • Boukoussa, B., Mokhtar, A., El Guerdaoui, A., Hachemaoui, M., Ouachtak, H., Abdelkrim, S., Addi Ait, A., Babou, S., Boudina, B., Bengueddach, A., Hamacha, R. (2021). Adsorption behavior of cationic dye on mesoporous silica SBA-15 carried by calcium alginate beads: Experimental and molecular dynamics study. Journal of Molecular Liquids, 333, 115976. https://doi.org/10.1016/j.molliq.2021.115976
  • Volikov, A. B., Ponomarenko, S. A., Konstantinov, A. I., Hatfield, K., & Perminova, I. V. (2016). Nature-like solution for removal of direct brown 1 azo dye from aqueous phase using humics-modified silica gel. Chemosphere, 145, 83–88. https://doi.org/10.1016/j.chemosphere.2015.11.070
  • Patra, A. S., Ghorai, S., Sarkar, D., Das, R., Sarkar, S., & Pal, S. (2017). Anionically functionalized guar gum embedded with silica nanoparticles: An efficient nanocomposite adsorbent for rapid adsorptive removal of toxic cationic dyes and metal ions. Bioresource Technology, 225, 367–376. https://doi.org/10.1016/j.biortech.2016.11.093
  • Zhang, Y., Xia, K., Liu, X., Chen, Z., Du, H., & Zhang, X. (2019). Synthesis of cationic-modified silica gel and its adsorption properties for anionic dyes. Journal of the Taiwan Institute of Chemical Engineers, 102, 1–8. https://doi.org/10.1016/j.jtice.2019.05.005
  • Samiey, B., & Toosi, A. R. (2010). Adsorption of malachite green on silica gel: effects of NaCl, pH and 2-propanol. Journal of hazardous materials, 184(1–3), 739–745. https://doi.org/10.1016/j.jhazmat.2010.08.101
  • Mansa, R. F., Sipaut, C. S., Rahman, I. A., Yusof, N. S. M., & Jafarzadeh, M. (2016). Preparation of glycine–modified silica nanoparticles for the adsorption of malachite green dye. Journal of Porous Materials, 23(1), 35–46. https://doi.org/10.1007/s10934-015-0053-3
  • Hassan-Zadeh, B., Rahmanian, R., Salmani, M. H., & Salmani, M. J. (2021). Functionalization of Synthesized Nanoporous Silica and Its Application in Malachite Green Removal from Contaminated Water. Journal of Environmental Health and Sustainable Development, 6(2), 1311–1320. https://doi.org/10.18502/jehsd.v6i2.6542
  • Hossain, M. A., Hossain, M. L., & Hassan, T. Al. (2016). Equilibrium, Thermodynamic and Mechanism Studies of Malachite Green Adsorption on Used Black Tea Leaves from Acidic Solution. International Letters of Chemistry, Physics and Astronomy, 64(2018), 77–88. https://doi.org/10.56431/p-c20qfs
  • Kaya, M., Zahmakiran, M., Özkar, S., & Volkan, M. (2012). Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: Cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance. ACS Applied Materials and Interfaces, 4(8), 3866–3873. https://doi.org/10.1021/am3005994
  • Wang, J., Liu, C., Hussain, I., Li, C., Li, J., Sun, X., Shen, J., Han, W., Wang, L. (2016). Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: The effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye. RSC Advances, 6(59), 54623–54635. https://doi.org/10.1039/c6ra08501f
  • Huo, Y., Ding, W., Huang, X., Xu, J., & Zhao, M. (2011). Fluoride removal by lanthanum alginate bead: Adsorbent characterization and adsorption mechanism. Chinese Journal of Chemical Engineering, 19(3), 365–370. https://doi.org/10.1016/S1004-9541(09)60222-6
  • Kumar, A., Rana, A., Sharma, G., Naushad, M., Dhiman, P., Kumari, A., & Stadler, F. J. (2019). Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. Journal of Molecular Liquids, 290, 111177. https://doi.org/10.1016/j.molliq.2019.111177
  • Sun, S., Yang, X., Zhang, Y., Zhang, F., Ding, J., Bao, J., & Gao, C. (2012). Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Progress in Natural Science: Materials International, 22(6), 639–643. https://doi.org/10.1016/j.pnsc.2012.11.008
  • Ullah, R., Deb, B. K., Yousuf, M., & Mollah, A. (2014). Synthesis and Characterization of Silica Coated Iron-Oxide Composites of Different Ratios. International Journal of Composite Materials, 4(2), 135–145. https://doi.org/10.5923/j.cmaterials.20140402.13
  • Yu, J., Jin, J., Cheng, B., & Jaroniec, M. (2014). A noble metal-free reduced graphene oxide-cds nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. Journal of Materials Chemistry A, 2(10), 3407–3416. https://doi.org/10.1039/c3ta14493c
  • Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B. H. (2019). Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using: Papaver somniferum L. RSC Advances, 9(51), 29541–29548. https://doi.org/10.1039/c9ra04424h
  • Yedurkar, S., Maurya, C., & Mahanwar, P. (2016). Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach. Open Journal of Synthesis Theory and Applications, 05(01), 1–14. https://doi.org/10.4236/ojsta.2016.51001
  • Wang, P., Wang, X., Yu, S., Zou, Y., Wang, J., Chen, Z., Alharbi, S. N., Alsaedi, A., Hayat, T., Chen, Y., & Wang, X. (2016). Silica coated Fe 3 O 4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chemical Engineering Journal, 306, 280–288. https://doi.org/10.1016/j.cej.2016.07.068
  • Konicki, W., Sibera, D., Mijowska, E., Lendzion-Bieluń, Z., & Narkiewicz, U. (2013). Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. Journal of colloid and interface science, 398, 152–60. https://doi.org/10.1016/j.jcis.2013.02.021
  • Kragović, M., Stojmenović, M., Petrović, J., Loredo, J., Pašalić, S., Nedeljković, A., & Ristović, I. (2019). Influence of Alginate Encapsulation on Point of Zero Charge (pHpzc) and Thermodynamic Properties of the Natural and Fe(III) - Modified Zeolite. Procedia Manufacturing, 32, 286–293. https://doi.org/10.1016/j.promfg.2019.02.216
  • Banerjee, S., & Chattopadhyaya, M. C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10, S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005
  • Musa, M., Hasan, H., Malkoç, H., Ergüt, M., Uzunoğlu, D., & Özer, A. (2020). Effective adsorption of tetracycline with Co3O4/Fe3O4 bimetallic nanoparticles. Turkish Journal of Engineering, 4(4), 209-217. https://doi.org/10.31127/tuje.648882
  • Meena, A. K., Kadirvelu, K., Mishraa, G. K., Rajagopal, C., & Nagar, P. N. (2008). Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. Journal of Hazardous Materials, 150(3), 619–625. https://doi.org/10.1016/j.jhazmat.2007.05.011
  • Eltaweil, A. S., Ali Mohamed, H., Abd El-Monaem, E. M., & El-Subruiti, G. M. (2020). Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Advanced Powder Technology, 31(3), 1253–1263. https://doi.org/10.1016/j.apt.2020.01.005
  • Chinthalapudi, N., Kommaraju, V. V. D., Kannan, M. K., Nalluri, C. B., & Varanasi, S. (2021). Composites of cellulose nanofibers and silver nanoparticles for malachite green dye removal from water. Carbohydrate Polymer Technologies and Applications, 2, 100098. https://doi.org/10.1016/j.carpta.2021.100098
  • Sarojini, G., Venkatesh Babu, S., Rajamohan, N., & Rajasimman, M. (2022). Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. Environmental Research, 204, 112132. https://doi.org/10.1016/j.envres.2021.112132
  • Hojjati-Najafabadi, A., Nasr Esfahani, P., Davar, F., Aminabhavi, T. M., & Vasseghian, Y. (2023). Adsorptive removal of malachite green using novel GO@ZnO-NiFe2O4-αAl2O3 nanocomposites. Chemical Engineering Journal, 471(May), 144485. https://doi.org/10.1016/j.cej.2023.144485
  • Hashem, A. A., Mahmoud, S. A., Geioushy, R. A., & Fouad, O. A. (2023). Adsorption of malachite green dye over synthesized calcium silicate nanopowders from waste materials. Materials Science and Engineering: B, 295(December 2022), 116605. https://doi.org/10.1016/j.mseb.2023.116605
  • Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, H. R., Asif, M., Tyagi, I., Agarwal, S., Gupta, V. K. (2016). Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. Journal of Industrial and Engineering Chemistry, 34, 130–138. https://doi.org/10.1016/j.jiec.2015.11.001
  • Haounati, R., Ouachtak, H., El Haouti, R., Akhouairi, S., Largo, F., Akbal, F., Benlhachemi, A., Jada, A., Addi, A. A. (2021). Elaboration and properties of a new SDS/CTAB@Montmorillonite organoclay composite as a superb adsorbent for the removal of malachite green from aqueous solutions. Separation and Purification Technology, 255(2020), 117335. https://doi.org/10.1016/j.seppur.2020.117335
  • Li, X. Y., Wang, W. R., Xue, R. C., Chen, P. Y., Wang, Y., & Yu, L. P. (2023). Carbon dots/silica nanoaggregates for highly efficient adsorption of alizarin red S and malachite green dyes. New Journal of Chemistry, 47(18), 8965–8973. https://doi.org/10.1039/d3nj01273e
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004
  • Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57U(1), 385–470. https://doi.org/10.1515/zpch-1907-5723
  • You, X., Zhou, R., Zhu, Y., Bu, D., & Cheng, D. (2022). Adsorption of dyes methyl violet and malachite green from aqueous solution on multi-step modified rice husk powder in single and binary systems: Characterization, adsorption behavior and physical interpretations. Journal of Hazardous Materials, 430, 128445. https://doi.org/10.1016/j.jhazmat.2022.128445
  • Wang, D., Liu, L., Jiang, X., Yu, J., & Chen, X. (2015). Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466, 166–173. https://doi.org/10.1016/j.colsurfa.2014.11.021
  • Vergis, B. R., Hari Krishna, R., Kottam, N., Nagabhushana, B. M., Sharath, R., & Darukaprasad, B. (2018). Removal of malachite green from aqueous solution by magnetic CuFe2O4 nano-adsorbent synthesized by one pot solution combustion method. Journal of Nanostructure in Chemistry, 8(1), 1–12. https://doi.org/10.1007/s40097-017-0249-y
  • Dastkhoon, M., Ghaedi, M., Asfaram, A., Goudarzi, A., Langroodi, S. M., Tyagi, I., Agarwall, S., & Gupta, V. K. (2015). Ultrasound assisted adsorption of malachite green dye onto ZnS:Cu-NP-AC: Equilibrium isotherms and kinetic studies - Response surface optimization. Separation and Purification Technology, 156, 780–788. https://doi.org/10.1016/j.seppur.2015.11.001
  • Chen, H., Liu, T., Meng, Y., Cheng, Y., Lu, J., & Wang, H. (2020). Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125281. https://doi.org/10.1016/j.colsurfa.2020.125281
  • Tanyol, M. (2017). Rapid malachite green removal from aqueous solution by natural zeolite: Process optimization by response surface methodology. Desalination and Water Treatment, 65, 294–303. https://doi.org/10.5004/dwt.2017.20185
  • Hameed, B. H., & El-Khaiary, M. I. (2008). Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159(2–3), 574–579. https://doi.org/10.1016/j.jhazmat.2008.02.054
  • Sadegh, H., Shahryari-Ghoshekandi, R., Agarwal, S., Tyagi, I., Asif, M., & Gupta, V. K. (2015). Microwave-assisted removal of malachite green by carboxylate functionalized multi-walled carbon nanotubes: Kinetics and equilibrium study. Journal of Molecular Liquids, 206, 151–158. https://doi.org/10.1016/j.molliq.2015.02.007
  • Mohammadi, A., Daemi, H., & Barikani, M. (2014). Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. International Journal of Biological Macromolecules, 69, 447–455. https://doi.org/10.1016/j.ijbiomac.2014.05.042
  • Ali, H., & Ismail, A. M. (2021). Developing montmorillonite/PVDF/PEO microporous membranes for removal of malachite green: adsorption, isotherms, and kinetics. Journal of Polymer Research, 28(11), 429. https://doi.org/10.1007/s10965-021-02789-3
  • Ghaedi, M., Azad, F. N., Dashtian, K., Hajati, S., Goudarzi, A., & Soylak, M. (2016). Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 167, 157–164. https://doi.org/10.1016/j.saa.2016.05.025
  • Lagergren, S. K. (1898). About the Theory of So-called Adsorption of Soluble Substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.
  • Ho, Y. S., & McKay, G. (2004). Sorption of copper(II) from aqueous solution by Peat. Water, Air, and Soil Pollution, 158(1), 77–97. https://doi.org/10.1023/B:WATE.0000044830.63767.a3
  • Weber, W. J., & Morris, J. C. (1963). Closure to “Kinetics of Adsorption on Carbon from Solution”. Journal of the Sanitary Engineering Division, 89(6), 53–55. https://doi.org/10.1061/jsedai.0000467
There are 73 citations in total.

Details

Primary Language English
Subjects Environmental Pollution and Prevention
Journal Section Articles
Authors

Memduha Ergüt 0000-0001-7297-1533

Ayla Özer 0000-0002-7824-238X

Project Number -
Early Pub Date July 5, 2024
Publication Date July 28, 2024
Submission Date January 3, 2024
Acceptance Date February 21, 2024
Published in Issue Year 2024

Cite

APA Ergüt, M., & Özer, A. (2024). Effective adsorption of malachite green with silica gel supported iron-zinc bimetallic nanoparticles. Turkish Journal of Engineering, 8(3), 510-523. https://doi.org/10.31127/tuje.1413970
AMA Ergüt M, Özer A. Effective adsorption of malachite green with silica gel supported iron-zinc bimetallic nanoparticles. TUJE. July 2024;8(3):510-523. doi:10.31127/tuje.1413970
Chicago Ergüt, Memduha, and Ayla Özer. “Effective Adsorption of Malachite Green With Silica Gel Supported Iron-Zinc Bimetallic Nanoparticles”. Turkish Journal of Engineering 8, no. 3 (July 2024): 510-23. https://doi.org/10.31127/tuje.1413970.
EndNote Ergüt M, Özer A (July 1, 2024) Effective adsorption of malachite green with silica gel supported iron-zinc bimetallic nanoparticles. Turkish Journal of Engineering 8 3 510–523.
IEEE M. Ergüt and A. Özer, “Effective adsorption of malachite green with silica gel supported iron-zinc bimetallic nanoparticles”, TUJE, vol. 8, no. 3, pp. 510–523, 2024, doi: 10.31127/tuje.1413970.
ISNAD Ergüt, Memduha - Özer, Ayla. “Effective Adsorption of Malachite Green With Silica Gel Supported Iron-Zinc Bimetallic Nanoparticles”. Turkish Journal of Engineering 8/3 (July 2024), 510-523. https://doi.org/10.31127/tuje.1413970.
JAMA Ergüt M, Özer A. Effective adsorption of malachite green with silica gel supported iron-zinc bimetallic nanoparticles. TUJE. 2024;8:510–523.
MLA Ergüt, Memduha and Ayla Özer. “Effective Adsorption of Malachite Green With Silica Gel Supported Iron-Zinc Bimetallic Nanoparticles”. Turkish Journal of Engineering, vol. 8, no. 3, 2024, pp. 510-23, doi:10.31127/tuje.1413970.
Vancouver Ergüt M, Özer A. Effective adsorption of malachite green with silica gel supported iron-zinc bimetallic nanoparticles. TUJE. 2024;8(3):510-23.
Flag Counter