Stepwise double-sided friction stir welding: an alternative for root defect mitigation in aluminium plates with lower gauge numbers
Year 2024,
, 611 - 618, 31.10.2024
Olatunji Oladimeji Ojo
,
Ozioma Alaba Oboro
Abstract
Penetration-induced fractional unbonded defects and flow-induced root flaws are part of the discontinuities of the conventional friction stir welded (FSW’ed) aluminium alloys with limited impact assessment/clarification in literature. The novelty of this study lies in the attempt to eliminate penetration-aided root defect via a stepwise double-sided welding process as well as identify its impact on loadbearing. As a result, the stepwise double-sided FSW welding of a thick aluminium plate (6 mm) was carried out while the microstructure, strength, and fracture modes of the ensuing welds were compared with the conventional (single-sided) friction stir welded counterparts. The stepwise double-sided FSW-welded joint demonstrated better tensile strength relative to the single-sided FSW-welded counterparts owing to its material flow consolidation (two-side deformation) and elimination of penetration-induced fractional unbonded region/root defect. The welding processes do not have a noteworthy influence on the fracture location of the welds as failure ensued via the stir zones of the respective welds. Transient breaking/brittle appearance, and ductile fracture modes were noticed in the single-sided and stepwise double-sided FSW-welded samples respectively. The stepwise double-sided FSW process is recommended as a better choice for thick workpieces relative to conventional FSW to improve the weld’s loadbearing resistance.
References
- Wang, Z. L., Zhang, Z., Xue, P., Ni, D. R., Ma, Z. Y., Hao, Y. F., Zhao, Y. H., & Wang, G. Q. (2022). Defect formation, microstructure evolution, and mechanical properties of bobbin tool friction–stir welded 2219-T8 alloy. Materials Science and Engineering: A, 832, 142414.
- Bayazid, S. M., Farhangi, H., & Ghahramani, A. (2015). Effect of pin profile on defects of friction stir welded 7075 aluminium alloy. Procedia Materials Science, 11, 12–16.
- Shirazi, H., Kheirandish, S., & Safarkhanian, M. A. (2015). Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminium alloy. Measurement, 76, 62–69.
- Ojo, O. O., Taban, E., Kaluc, E., & Sik, A. (2019). Cyclic lateral behavior of friction stir spot welds of AA2219 aluminium alloy: Impact of inherent flow defects. Kovove Materialy, 57, 329–342.
- Ebrahimzadeh, V., Paidar, M., Safarkhanian, M. A., & Oladimeji, O. O. (2018). Orbital friction stir lap welding of AA5456-H321/AA5456-O aluminium alloys under varied parameters. International Journal of Advanced Manufacturing Technology, 96, 1237–1254.
- Shankar, S., Saw, K., Chattopadhyaya, S., & Hloch, S. (2018). Investigation on different type of defects, temperature variation and mechanical properties of friction stir welded lap joint of aluminium alloy 6101-T6. Materials Today: Proceedings, 5, 24378–24386.
- Yi, T., Liu, S., Fang, C., & Jiang, G. (2020). Eliminating hole defects and improving microstructure and mechanical properties of friction stir welded joint of 2519 aluminium alloy via TIG arc. Journal of Materials Processing Technology, 310, 117773.
- Wang, X., & Lados, D. A. (2022). Friction stir welding of similar aluminium alloys thick plates: Understanding the material flow, microstructure evolution, defect formation, and mechanical properties. Materialia, 24, 101508.
- Mehrez, S., Paidar, M., Cooke, K., Vihnesh, R. V., & Ojo, O. O. (2021). Comparative study on weld characteristics of AA5083-H112 to AA6061-T6 sheets produced by MFSC and FSSW processes. Vacuum, 190, 110298.
- Entringer, J., Meisnar, M., Reimann, M., Blawert, C., Zheludkevich, M., & dos Santos, J. F. (2019). The effect of grain boundary precipitates on stress corrosion cracking in a bobbin tool friction stir welded Al-Cu-Li alloy. Materials Letters: X, 2, 100014.
- Xu, W., Wang, H., Luo, Y., Li, W., & Fu, M. W. (2018). Mechanical behavior of 7085-T7452 aluminium alloy thick plate joint produced by double-sided friction stir welding: Effect of welding parameters and strain rates. Journal of Manufacturing Processes, 35, 261–270.
- Rahmatian, B., Dehghani, K., & Mirsalehi, S. E. (2020). Effect of adding SiC nanoparticles to nugget zone of thick AA5083 aluminium alloy joined by using double-sided friction stir welding. Journal of Manufacturing Processes, 52, 152–164.
- Chen, J., Fujii, H., Sun, Y., Morisada, Y., & Ueji, R. (2013). Fine grained Mg–3Al–1Zn alloy with randomized texture in the double-sided friction stir welded joints. Materials Science and Engineering: A, 580, 83–91.
- Khalid, E., Shunmugasamy, V. C., & Mansoor, B. (2022). Microstructure and tensile behavior of a bobbin friction stir welded magnesium alloy. Materials Science and Engineering: A, 840, 142861.
- Shao, M., Wang, C., Zhang, H., Zhang, J., Liu, D., Wang, F., Ji, Y., & Chen, G. (2022). Microstructure and corrosion behavior of bobbin tool friction stir welded 2219 aluminium alloy. Materials Characterization, 192, 112178.
- Fuse, K., & Badheka, V. (2021). Effect of shoulder diameter on bobbin tool friction stir welding of AA 6061-T6 alloy. Materials Today: Proceedings, 42, 810–815.
- Wu, D., Li, W., Liu, X., Gao, Y., Wen, Q., & Vairis, A. (2021). Effect of material configuration and welding parameter on weld formability and mechanical properties of bobbin tool friction stir welded Al-Cu and Al-Mg aluminium alloys. Materials Characterization, 182, 111518.
- Chu, Q., Li, W. Y., Wu, D., Liu, X. C., Hao, S. J., Zou, Y. F., Yang, X. W., & Vairis, A. (2021). In-depth understanding of material flow behavior and refinement mechanism during bobbin tool friction stir welding. International Journal of Machine Tools and Manufacture, 171, 103816.
- Li, G. H., Zhou, L., Luo, S. F., Dong, F. B., & Guo, N. (2020). Quality improvement of bobbin tool friction stir welds in Mg-Zn-Zr alloy by adjusting tool geometry. Journal of Materials Processing Technology, 282, 116685.
- Li, G. H., Zhou, L., Zhang, H. F., Guo, G. Z., Luo, S. F., & Guo, N. (2021). Evolution of grain structure, texture and mechanical properties of a Mg–Zn–Zr alloy in bobbin friction stir welding. Materials Science and Engineering: A, 799, 140267.
- Sahu, P. K., Vasudevan, N. P., Das, B., & Pal, S. (2016). Assessment of self-reacting bobbin tool friction stir welding for joining AZ31 magnesium alloy at inert gas environment. Journal of Magnesium and Alloys, 7, 661–671.
- Li, G., Zhou, L., Zhang, J., Luo, S., & Guo, N. (2014). Macrostructure, microstructure and mechanical properties of bobbin tool friction stir welded ZK60 Mg alloy joints. Materials Research and Technology, 9, 9348–9361.
- Li, G., Zhou, L., Luo, S., Dong, F., & Guo, N. (2020). Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy. Materials Science and Engineering: A, 776, 138953.
- Li, G., Zhou, L., Zhang, H., Luo, S., & Guo, N. (2021). Effects of traverse speed on weld formation, microstructure and mechanical properties of ZK60 Mg alloy joint by bobbin tool friction stir welding. Chinese Journal of Aeronautics, 34, 238–250.
- Li, W. Y., Fu, T., Hütsch, L., Hilgert, J., Wang, F. F., dos Santos, J. F., & Huber, N. (2014). Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31. Materials & Design, 64, 714–720.
- Yang, C., Zhang, J. F., Ma, G. N., Wu, L. H., Zhang, X. M., He, G. Z., Xue, P., Ni, D. R., Xiao, B. L., Wang, K. S., & Ma, Z. Y. (2020). Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates. Journal of Materials Science & Technology, 41, 105–116.
- Entringer, J., Reimann, M., Norman, A., & dos Santos, J. F. (2019). Influence of Cu/Li ratio on the microstructure evolution of bobbin-tool friction stir welded Al–Cu–Li alloys. Journal of Materials Research and Technology, 8, 2031–2040.
- Chu, Q., Li, W. Y., Hou, H. L., Yang, X. W., Vairis, A., Wang, C., & Wang, W. B. (2019). On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy. Journal of Materials Science & Technology, 35, 784–789.
- Nosrati, H. G., Yazdani, N. M., & Khoran, M. (2022). Double-sided friction stir welding of AA 2024-T6 joints: Mathematical modeling and optimization. CIRP Journal of Manufacturing Science and Technology, 36, 1–11.
- Azeez, S. T., & Akinlabi, E. T. (2018). Effect of processing parameters on microhardness and microstructure of a double-sided dissimilar friction stir welded AA6082-T6 and AA7075-T6 aluminium alloy. Materials Today: Proceedings, 5, 18315–18324.
- Ke, W. C., Oliveira, J. P., Ao, S. S., Teshome, F. B., Chen, L., Peng, B., & Zeng, Z. (2022). Thermal process and material flow during dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys. Journal of Materials Research and Technology, 17, 1942–1954.
- Thakur, A., Sharma, V., & Bhadauria, S. S. (2021). Effect of tool tilt angle on weld joint strength and microstructural characterization of double-sided friction stir welding of AZ31B magnesium alloy. CIRP Journal of Manufacturing Science and Technology, 35, 132–145.
- Darmadi, D. B., & Talice, M. (2011). Improving the strength of friction stir welded joint by double-side friction welding and varying pin geometry. Engineering Science and Technology, an International Journal, 24, 637–647.
- Wang, F. F., Li, W. Y., Shen, J., Wen, Q., & dos Santos, J. F. (2018). Improving weld formability by a novel dual-rotation bobbin tool friction stir welding. Journal of Materials Science & Technology, 34, 135–139.
- Chen, J., Ueji, R., & Fujii, H. (2015). Double-sided friction-stir welding of magnesium alloy with concave–convex tools for texture control. Materials & Design, 76, 181–189.
- Wang, X., Morisada, Y., & Fujii, H. (2021). Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes. Journal of Materials Science & Technology, 85, 158–168.
- Wang, X., Morisada, Y., & Fujii, H. (2021). High-strength Fe/Al dissimilar joint with uniform nanometer-sized intermetallic compound layer and mechanical interlock formed by adjustable probes during double-sided friction stir spot welding. Materials Science and Engineering: A, 809, 141005.
- Sun, Y., Fujii, H., & Morisada, Y. (2020). Double-sided friction stir welding of 40 mm thick low carbon steel plates using a pcBN rotating tool. Journal of Manufacturing Processes, 50, 319–328.
- Yang, C., Ni, D. R., Xue, P., Xiao, B. L., Wang, W., Wang, K. S., & Ma, Z. Y. (2018). A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates. Materials Characterization, 145, 20–28.
- Xu, W. F., & Liu, J. H. (2015). Microstructure evolution along thickness in double-side friction stir welded 7085 Al alloy. Transactions of Nonferrous Metals Society of China, 25, 3212–3222.
- Wang, X., Morisada, Y., Ushioda, K., & Fujii, H. (2022). Double-sided friction stir spot welding of ultra-high strength C-Mn-Si martensitic steel by adjustable probes. Journal of Materials Processing Technology, 300, 117422.
- Wang, X., Morisada, Y., & Fujii, H. (2021). Interface development and microstructure evolution during double-sided friction stir spot welding of magnesium alloy by adjustable probes and their effects on mechanical properties of the joint. Journal of Materials Processing Technology, 294, 117104.
- Qiao, Q., Su, Y., Cao, H., Zhang, D., & Ouyang, Q. (2020). Effect of post-weld heat treatment on double-sided friction stir welded joint of 120 mm ultra-thick SiCp/Al composite plates. Materials Characterization, 169, 110668.
- Ojo, O. O., Taban, E., & Kaluc, E. (2015). Friction stir spot welding of aluminium alloys: A recent review. Materialpruefung/Materials Testing, 57, 609–627.
- Ojo, O. O., & Obasha, I. O. (2022). Modeling and optimization of friction stir stitching of AISI 201 stainless steel via Box-Behnken design methodology. Production Engineering Archives, 28, 132–140.
- Ojo, O. O. (2019). Multi-objective optimization of friction stir spot welds of aluminium alloy using entropy measurement. International Journal of Engineering Research in Africa, 45, 28–41.
- Oladimeji, O. O., Taban, E., & Kaluc, E. (2016). Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds. Materials & Design, 108, 518–528.
- Paidar, M., Kazemi, A., Mahrez, S., & Ojo, O. O. (2021). Investigation of modified friction stir clinching-brazing process of AA2024 Al/AZ31 Mg: Metallurgical and mechanical properties. Archives of Civil and Mechanical Engineering, 21, 115.
- Paidar, M., Mehrez, S., Ojo, O. O., Mohanavel, V., Babaei, B., & Ravichandran, M. (2021). Modified friction stir clinching of AA6061-T6/AA5754-O joint: Effect of tool rotational speed and solution heat treatment on mechanical, microstructure, and fracture behaviors. Materials Characterization, 173, 110962.
- Heydari, F., Amadeh, A. A., Ojo, O. O., Hasanniya, M. H., & Tamizifar, M. (2019). Microstructure and mechanical properties of autobody steel joined by friction stir spot welding. Sadhana - Academy Proceedings in Engineering Sciences, 44(3), 73.
Year 2024,
, 611 - 618, 31.10.2024
Olatunji Oladimeji Ojo
,
Ozioma Alaba Oboro
References
- Wang, Z. L., Zhang, Z., Xue, P., Ni, D. R., Ma, Z. Y., Hao, Y. F., Zhao, Y. H., & Wang, G. Q. (2022). Defect formation, microstructure evolution, and mechanical properties of bobbin tool friction–stir welded 2219-T8 alloy. Materials Science and Engineering: A, 832, 142414.
- Bayazid, S. M., Farhangi, H., & Ghahramani, A. (2015). Effect of pin profile on defects of friction stir welded 7075 aluminium alloy. Procedia Materials Science, 11, 12–16.
- Shirazi, H., Kheirandish, S., & Safarkhanian, M. A. (2015). Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminium alloy. Measurement, 76, 62–69.
- Ojo, O. O., Taban, E., Kaluc, E., & Sik, A. (2019). Cyclic lateral behavior of friction stir spot welds of AA2219 aluminium alloy: Impact of inherent flow defects. Kovove Materialy, 57, 329–342.
- Ebrahimzadeh, V., Paidar, M., Safarkhanian, M. A., & Oladimeji, O. O. (2018). Orbital friction stir lap welding of AA5456-H321/AA5456-O aluminium alloys under varied parameters. International Journal of Advanced Manufacturing Technology, 96, 1237–1254.
- Shankar, S., Saw, K., Chattopadhyaya, S., & Hloch, S. (2018). Investigation on different type of defects, temperature variation and mechanical properties of friction stir welded lap joint of aluminium alloy 6101-T6. Materials Today: Proceedings, 5, 24378–24386.
- Yi, T., Liu, S., Fang, C., & Jiang, G. (2020). Eliminating hole defects and improving microstructure and mechanical properties of friction stir welded joint of 2519 aluminium alloy via TIG arc. Journal of Materials Processing Technology, 310, 117773.
- Wang, X., & Lados, D. A. (2022). Friction stir welding of similar aluminium alloys thick plates: Understanding the material flow, microstructure evolution, defect formation, and mechanical properties. Materialia, 24, 101508.
- Mehrez, S., Paidar, M., Cooke, K., Vihnesh, R. V., & Ojo, O. O. (2021). Comparative study on weld characteristics of AA5083-H112 to AA6061-T6 sheets produced by MFSC and FSSW processes. Vacuum, 190, 110298.
- Entringer, J., Meisnar, M., Reimann, M., Blawert, C., Zheludkevich, M., & dos Santos, J. F. (2019). The effect of grain boundary precipitates on stress corrosion cracking in a bobbin tool friction stir welded Al-Cu-Li alloy. Materials Letters: X, 2, 100014.
- Xu, W., Wang, H., Luo, Y., Li, W., & Fu, M. W. (2018). Mechanical behavior of 7085-T7452 aluminium alloy thick plate joint produced by double-sided friction stir welding: Effect of welding parameters and strain rates. Journal of Manufacturing Processes, 35, 261–270.
- Rahmatian, B., Dehghani, K., & Mirsalehi, S. E. (2020). Effect of adding SiC nanoparticles to nugget zone of thick AA5083 aluminium alloy joined by using double-sided friction stir welding. Journal of Manufacturing Processes, 52, 152–164.
- Chen, J., Fujii, H., Sun, Y., Morisada, Y., & Ueji, R. (2013). Fine grained Mg–3Al–1Zn alloy with randomized texture in the double-sided friction stir welded joints. Materials Science and Engineering: A, 580, 83–91.
- Khalid, E., Shunmugasamy, V. C., & Mansoor, B. (2022). Microstructure and tensile behavior of a bobbin friction stir welded magnesium alloy. Materials Science and Engineering: A, 840, 142861.
- Shao, M., Wang, C., Zhang, H., Zhang, J., Liu, D., Wang, F., Ji, Y., & Chen, G. (2022). Microstructure and corrosion behavior of bobbin tool friction stir welded 2219 aluminium alloy. Materials Characterization, 192, 112178.
- Fuse, K., & Badheka, V. (2021). Effect of shoulder diameter on bobbin tool friction stir welding of AA 6061-T6 alloy. Materials Today: Proceedings, 42, 810–815.
- Wu, D., Li, W., Liu, X., Gao, Y., Wen, Q., & Vairis, A. (2021). Effect of material configuration and welding parameter on weld formability and mechanical properties of bobbin tool friction stir welded Al-Cu and Al-Mg aluminium alloys. Materials Characterization, 182, 111518.
- Chu, Q., Li, W. Y., Wu, D., Liu, X. C., Hao, S. J., Zou, Y. F., Yang, X. W., & Vairis, A. (2021). In-depth understanding of material flow behavior and refinement mechanism during bobbin tool friction stir welding. International Journal of Machine Tools and Manufacture, 171, 103816.
- Li, G. H., Zhou, L., Luo, S. F., Dong, F. B., & Guo, N. (2020). Quality improvement of bobbin tool friction stir welds in Mg-Zn-Zr alloy by adjusting tool geometry. Journal of Materials Processing Technology, 282, 116685.
- Li, G. H., Zhou, L., Zhang, H. F., Guo, G. Z., Luo, S. F., & Guo, N. (2021). Evolution of grain structure, texture and mechanical properties of a Mg–Zn–Zr alloy in bobbin friction stir welding. Materials Science and Engineering: A, 799, 140267.
- Sahu, P. K., Vasudevan, N. P., Das, B., & Pal, S. (2016). Assessment of self-reacting bobbin tool friction stir welding for joining AZ31 magnesium alloy at inert gas environment. Journal of Magnesium and Alloys, 7, 661–671.
- Li, G., Zhou, L., Zhang, J., Luo, S., & Guo, N. (2014). Macrostructure, microstructure and mechanical properties of bobbin tool friction stir welded ZK60 Mg alloy joints. Materials Research and Technology, 9, 9348–9361.
- Li, G., Zhou, L., Luo, S., Dong, F., & Guo, N. (2020). Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy. Materials Science and Engineering: A, 776, 138953.
- Li, G., Zhou, L., Zhang, H., Luo, S., & Guo, N. (2021). Effects of traverse speed on weld formation, microstructure and mechanical properties of ZK60 Mg alloy joint by bobbin tool friction stir welding. Chinese Journal of Aeronautics, 34, 238–250.
- Li, W. Y., Fu, T., Hütsch, L., Hilgert, J., Wang, F. F., dos Santos, J. F., & Huber, N. (2014). Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31. Materials & Design, 64, 714–720.
- Yang, C., Zhang, J. F., Ma, G. N., Wu, L. H., Zhang, X. M., He, G. Z., Xue, P., Ni, D. R., Xiao, B. L., Wang, K. S., & Ma, Z. Y. (2020). Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates. Journal of Materials Science & Technology, 41, 105–116.
- Entringer, J., Reimann, M., Norman, A., & dos Santos, J. F. (2019). Influence of Cu/Li ratio on the microstructure evolution of bobbin-tool friction stir welded Al–Cu–Li alloys. Journal of Materials Research and Technology, 8, 2031–2040.
- Chu, Q., Li, W. Y., Hou, H. L., Yang, X. W., Vairis, A., Wang, C., & Wang, W. B. (2019). On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy. Journal of Materials Science & Technology, 35, 784–789.
- Nosrati, H. G., Yazdani, N. M., & Khoran, M. (2022). Double-sided friction stir welding of AA 2024-T6 joints: Mathematical modeling and optimization. CIRP Journal of Manufacturing Science and Technology, 36, 1–11.
- Azeez, S. T., & Akinlabi, E. T. (2018). Effect of processing parameters on microhardness and microstructure of a double-sided dissimilar friction stir welded AA6082-T6 and AA7075-T6 aluminium alloy. Materials Today: Proceedings, 5, 18315–18324.
- Ke, W. C., Oliveira, J. P., Ao, S. S., Teshome, F. B., Chen, L., Peng, B., & Zeng, Z. (2022). Thermal process and material flow during dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys. Journal of Materials Research and Technology, 17, 1942–1954.
- Thakur, A., Sharma, V., & Bhadauria, S. S. (2021). Effect of tool tilt angle on weld joint strength and microstructural characterization of double-sided friction stir welding of AZ31B magnesium alloy. CIRP Journal of Manufacturing Science and Technology, 35, 132–145.
- Darmadi, D. B., & Talice, M. (2011). Improving the strength of friction stir welded joint by double-side friction welding and varying pin geometry. Engineering Science and Technology, an International Journal, 24, 637–647.
- Wang, F. F., Li, W. Y., Shen, J., Wen, Q., & dos Santos, J. F. (2018). Improving weld formability by a novel dual-rotation bobbin tool friction stir welding. Journal of Materials Science & Technology, 34, 135–139.
- Chen, J., Ueji, R., & Fujii, H. (2015). Double-sided friction-stir welding of magnesium alloy with concave–convex tools for texture control. Materials & Design, 76, 181–189.
- Wang, X., Morisada, Y., & Fujii, H. (2021). Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes. Journal of Materials Science & Technology, 85, 158–168.
- Wang, X., Morisada, Y., & Fujii, H. (2021). High-strength Fe/Al dissimilar joint with uniform nanometer-sized intermetallic compound layer and mechanical interlock formed by adjustable probes during double-sided friction stir spot welding. Materials Science and Engineering: A, 809, 141005.
- Sun, Y., Fujii, H., & Morisada, Y. (2020). Double-sided friction stir welding of 40 mm thick low carbon steel plates using a pcBN rotating tool. Journal of Manufacturing Processes, 50, 319–328.
- Yang, C., Ni, D. R., Xue, P., Xiao, B. L., Wang, W., Wang, K. S., & Ma, Z. Y. (2018). A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates. Materials Characterization, 145, 20–28.
- Xu, W. F., & Liu, J. H. (2015). Microstructure evolution along thickness in double-side friction stir welded 7085 Al alloy. Transactions of Nonferrous Metals Society of China, 25, 3212–3222.
- Wang, X., Morisada, Y., Ushioda, K., & Fujii, H. (2022). Double-sided friction stir spot welding of ultra-high strength C-Mn-Si martensitic steel by adjustable probes. Journal of Materials Processing Technology, 300, 117422.
- Wang, X., Morisada, Y., & Fujii, H. (2021). Interface development and microstructure evolution during double-sided friction stir spot welding of magnesium alloy by adjustable probes and their effects on mechanical properties of the joint. Journal of Materials Processing Technology, 294, 117104.
- Qiao, Q., Su, Y., Cao, H., Zhang, D., & Ouyang, Q. (2020). Effect of post-weld heat treatment on double-sided friction stir welded joint of 120 mm ultra-thick SiCp/Al composite plates. Materials Characterization, 169, 110668.
- Ojo, O. O., Taban, E., & Kaluc, E. (2015). Friction stir spot welding of aluminium alloys: A recent review. Materialpruefung/Materials Testing, 57, 609–627.
- Ojo, O. O., & Obasha, I. O. (2022). Modeling and optimization of friction stir stitching of AISI 201 stainless steel via Box-Behnken design methodology. Production Engineering Archives, 28, 132–140.
- Ojo, O. O. (2019). Multi-objective optimization of friction stir spot welds of aluminium alloy using entropy measurement. International Journal of Engineering Research in Africa, 45, 28–41.
- Oladimeji, O. O., Taban, E., & Kaluc, E. (2016). Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds. Materials & Design, 108, 518–528.
- Paidar, M., Kazemi, A., Mahrez, S., & Ojo, O. O. (2021). Investigation of modified friction stir clinching-brazing process of AA2024 Al/AZ31 Mg: Metallurgical and mechanical properties. Archives of Civil and Mechanical Engineering, 21, 115.
- Paidar, M., Mehrez, S., Ojo, O. O., Mohanavel, V., Babaei, B., & Ravichandran, M. (2021). Modified friction stir clinching of AA6061-T6/AA5754-O joint: Effect of tool rotational speed and solution heat treatment on mechanical, microstructure, and fracture behaviors. Materials Characterization, 173, 110962.
- Heydari, F., Amadeh, A. A., Ojo, O. O., Hasanniya, M. H., & Tamizifar, M. (2019). Microstructure and mechanical properties of autobody steel joined by friction stir spot welding. Sadhana - Academy Proceedings in Engineering Sciences, 44(3), 73.