Research Article
BibTex RIS Cite

Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti

Year 2025, , 79 - 86, 20.01.2025
https://doi.org/10.31127/tuje.1509702

Abstract

This study focuses on fluid inclusions from the Hes-Daba area. Microthermometric measurements were conducted on quartz collected from surface veins that hosted inclusions in two phases: liquid and vapor. The mean homogenization temperature ranged from 150 °C to 367 °C and the melting point of ice ranged from −0.05 °C to −1.14 °C, indicating that the inclusion solutions consisted of 0.1 to 1.9 eq. wt% NaCl. The thermal history and thermal structure were evaluated to estimate the formation temperature. Selected samples were analyzed via x-ray diffraction to provide direct data on geothermal reservoirs; this was necessary because geothermal fluids, through their interactions, can alter the composition and properties of rocks. The main alteration minerals were quartz, calcite, alunite, epidote, hematite, illite, smectite, and chlorite. Therefore, the clay constituted a transition to a high-temperature environment, as evidenced by high temperature hydrothermal alteration minerals such as quartz (>180 °C) and epidote (~250 °C).

Supporting Institution

This research was financially supported by the Office Djiboutien de Développement de l'Energie Géothermique (ODDEG).

References

  • Choukroune, P., Francheteau, J., Auvray, L., Auzende, J. M., Brun, J. P., Sichler, B., ... & Lepine, J. C. (1988). Tectonics of an incipient oceanic rift: the Western extension of the Aden rift within the Gulf of Tadjoura, Republic of Djibouti. Marine geophysical researches, 9, 147-163.
  • Khaireh, A., (2012). Geothermal Development in Djibouti Republic: A Country Report. Geothermal-Energy.Org, 21–23.
  • Houssein, Bouh; Chandrasekharam, D.; Chandrasekhar, Varun; Jalludin, M. (2014). Geochemistry of thermal springs around Lake Abhe, Western Djibouti, International Journal of Sustainable Energy, 33(6), 1090–1102.
  • Corti, G., Bastow, I.D., Keir, D., Pagli, C. and Baker, E. (2015) Rift-related morphology of the Afar Depression. In, Billi, P. (ed.) Landscapes and landforms of Ethiopia. (World Geomorphological Landscapes) Dordrecht, NL. Springer, pp. 251-274.
  • Houmed, A. M., Haga, A. O., Abdilahi, S., & Varet, J. (2012, November). Proposal for new geothermal models and sites hierarchy in Djibouti Republic. In Proceedings of the 4th African Rift Geothermal Conference. Nairobi, Kenya (pp. 21-23).
  • Zan, L., Gianelli, G., Passerini, P., Troisi, C., Haga, A., (1990). Geothermal exploration in the Republic of Djibouti: thermal and geological data of the Hanlé and Asal areas. Geothermircs 19, 561–582.
  • Moussa, N., Fouquet, Y., Le Gall, B., Caminiti, A.M., Rolet, J., Bohn, M., and Jalludin, M. (2012). First evidence of epithermal gold occurrences in the SE Afar Rift Republic of Djibouti. Miner. Deposita 47, 563–576.
  • Kantoğlu B., Düzdar Argun İ. (2023). Evaluation of renewable energy source alternatives prioritization. Turkish Journal of Engineering, 7(1), 01-08.
  • Deniel, C., Vidal, P., Coulon, C., Vellutini, P. J., & Piguet, P. (1994). Temporal evolution of mantle sources during continental rifting: the volcanism of Djibouti (Afar). Journal of Geophysical Research: Solid Earth, 99(B2), 2853-2869.
  • Gaulier, J. M., & Huchon, P. H. I. L. I. P. P. E. (1991). Tectonic evolution of Afar triple junction. Bulletin de la Société géologique de France, 162(3), 451-464
  • Varet, J. (2021). Relationship of the Pan-African Tectonic Structures with the Opening of the Afar Triple Junction. The Geology of the Arabian-Nubian Shield, 737-771.
  • Awaleh, M.O.; Boschetti, T.; Adaneh, A.E.; Daoud, M.A.; Ahmed, M.M.; Dabar, O.A.; Soubaneh, Y.D.; Kawalieh, A.D.; Kadieh, I.H. (2020). Hydrochemistry and multi-isotope study of the waters from Hanlé-Gaggadé grabens (Republic of Djibouti, East African Rift System): A low-enthalpy geothermal resource from a transboundary aquifer. Geothermics 86, 101805.
  • De Vivo, B. and Frezzotti, M.L. (1994). Fluid inclusions in minerals: methods and applications. Short course of the working group (IMA) “Inclusions in Minerals” Pontignano/Siena 14 Sept. 1994, Fluids Research Laboratory, Department of Geological Sciences, YPI, Blacksburg, VA, USA.
  • Randive, K. R., Hari, K. R., Dora, M. L., Malpe, D. B., & Bhondwe, A. A. (2014). Study of fluid inclusions: methods, techniques and applications. Geological Magazine, 29(1 and 2), 19-28.
  • Touret, J. (1977, April). The significance of fluid inclusions in metamorphic rocks. In Thermodynamics in Geology: Proceedings of the NATO Advanced Study Institute held in Oxford, England, September 17–27, 1976 (pp. 203-227). Dordrecht: Springer Netherlands.
  • Van den Kerkhof, A. M., & Hein, U. F. (2001). Fluid inclusion petrography. Lithos, 55(1-4), 27-47. Roedder, E. (1972). Composition of fluid inclusions (No. 440-JJ).
  • Parry, W. T. (1998). Fault-fluid compositions from fluid-inclusion observations and solubilities of fracture-sealing minerals. Tectonophysics, 290(1-2), 1-26.
  • Stoops, G. (2021). Guidelines for analysis and description of soil and regolith thin sections (Vol. 184). John Wiley & Sons.
  • Chaplin, I. (1998). Preparation of Thin Sections. Microscopy Today, 6(7), 8-9.
  • Sumotarto, U., Irawan, A., & Hendrasto, F. (2020). Study of Hydrothermal Alteration Based on Analysis of X-Ray Diffraction at Cisolok Geothermal Area, Sukabumi District, West Java. In Proceedings World Geothermal Congress (Vol. 1).
  • Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C., & Takase, H. (2007). Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals. Physics and Chemistry of the Earth, Parts A/B/C, 32(1-7), 287-297.
  • Bish, D. L., Reynolds, R. C., & Post, J. E. (1989). Sample preparation for X-ray diffraction. Modern powder diffraction, 20, 73-99.
  • Bodnar, R.J. (1994). Philosophy of fluid inclusions analysis. In: De Vivo and M.L. Frezzotti (Eds.), Fluid Inclusions in Minerals and Applications. Virginia Tech, Blacksburg, VA, pp.1–6.
  • Moore, J. N., Adams, M. C., & Anderson, A. J. (2000). The fluid inclusion and mineralogic record of the transition from liquid-to vapor-dominated conditions in the Geysers geothermal system, California. Economic Geology, 95(8), 1719-1737
  • Roedder, E. (1963). Studies of fluid inclusions;[Part] 2, Freezing data and their interpretation. Economic geology, 58(2), 167-211.
  • So, C. S., Shelton, K. L., Chi, S. J., & Yun, S. T. (1991). Geochemical studies of the Gyeongchang W-Mo Mine, Republic of Korea; progressive meteoric water inundation of a magmatic hydrothermal system. Economic Geology, 86(4), 750-767.
  • Aydın Ertuğrul N., Hatipoğlu Bağcı Z., Lütfi Ertuğrul Ö., (2018). Aquifer Thermal Energy Storage Systems: Basic Concepts and General Design Methods. Turkish Journal of Engineering, 2 (2), 38 – 48.
  • Gebrehiwot M.K. (2010). Subsurface geology, hydrothermal alteration and geothermal model of Northern Skarðsmýrarfjall, Hellisheiði geothermal field, SW Iceland. University of Iceland, Faculty of Geosciences, UNU-GTP, Iceland, report 5, 65 pp.
  • Kristmannsdóttir, H. (1979). Alteration of basaltic rocks by hydrothermal activity at 100-300°C. In: Mortland, M.M., and Farmer, V.C. (editors), International Clay Conference 1978. Elsevier Scientific Publishing Co., Amsterdam, pp.359-367.
  • Kudo, A. M., & Weill, D. F. (1970). An igneous plagioclase thermometer. Contributions to Mineralogy and Petrology, 25(1), 52-65.
  • Eren M., Kadir S., and Akgöz M. (2017). Mineralogical, Geochemical and Micromorphological Characteristics of Calcite Precipitated from A Thin Cover of Recent Water Taken from The Stalagmites in Küpeli Cave, Esenpinar (Erdemli, Mersin), Southern Turkey. Turkish Journal of Engineering (TUJE), 1 (2), 44-51.
  • Beaufort, D., Papapanagiotou, P., Patrier, P., Fujimoto, K., & Kasai, K. (2021). High temperature smectites in active geothermal systems. In Water-Rock Interaction (pp. 493-496). Routledge.
  • Hedenquist, J.W., Arribas, A. and Gonzales-Urien, E. (2000). Exploration for Epithermal Gold Deposits, SEG Reviews, 13, pp.245–277.
  • Akben, Y. B. ., Yalçın , C. ., & Uras , Y. . (2023). Geology, mineralogy and geochemical signatures of carbonate-hosted Pb-Zn Deposit in margin fold belt: Dadağlı-Kahramanmaraş, Türkiye. Engineering Applications, 2(1), 60–68.
  • Ulu, A. E., Aydın, M. C., & Işık, E. (2022). Energy dissipation potential of flow separators placed in spillway flip bucket. Advanced Engineering Science, 2, 60–66.
Year 2025, , 79 - 86, 20.01.2025
https://doi.org/10.31127/tuje.1509702

Abstract

References

  • Choukroune, P., Francheteau, J., Auvray, L., Auzende, J. M., Brun, J. P., Sichler, B., ... & Lepine, J. C. (1988). Tectonics of an incipient oceanic rift: the Western extension of the Aden rift within the Gulf of Tadjoura, Republic of Djibouti. Marine geophysical researches, 9, 147-163.
  • Khaireh, A., (2012). Geothermal Development in Djibouti Republic: A Country Report. Geothermal-Energy.Org, 21–23.
  • Houssein, Bouh; Chandrasekharam, D.; Chandrasekhar, Varun; Jalludin, M. (2014). Geochemistry of thermal springs around Lake Abhe, Western Djibouti, International Journal of Sustainable Energy, 33(6), 1090–1102.
  • Corti, G., Bastow, I.D., Keir, D., Pagli, C. and Baker, E. (2015) Rift-related morphology of the Afar Depression. In, Billi, P. (ed.) Landscapes and landforms of Ethiopia. (World Geomorphological Landscapes) Dordrecht, NL. Springer, pp. 251-274.
  • Houmed, A. M., Haga, A. O., Abdilahi, S., & Varet, J. (2012, November). Proposal for new geothermal models and sites hierarchy in Djibouti Republic. In Proceedings of the 4th African Rift Geothermal Conference. Nairobi, Kenya (pp. 21-23).
  • Zan, L., Gianelli, G., Passerini, P., Troisi, C., Haga, A., (1990). Geothermal exploration in the Republic of Djibouti: thermal and geological data of the Hanlé and Asal areas. Geothermircs 19, 561–582.
  • Moussa, N., Fouquet, Y., Le Gall, B., Caminiti, A.M., Rolet, J., Bohn, M., and Jalludin, M. (2012). First evidence of epithermal gold occurrences in the SE Afar Rift Republic of Djibouti. Miner. Deposita 47, 563–576.
  • Kantoğlu B., Düzdar Argun İ. (2023). Evaluation of renewable energy source alternatives prioritization. Turkish Journal of Engineering, 7(1), 01-08.
  • Deniel, C., Vidal, P., Coulon, C., Vellutini, P. J., & Piguet, P. (1994). Temporal evolution of mantle sources during continental rifting: the volcanism of Djibouti (Afar). Journal of Geophysical Research: Solid Earth, 99(B2), 2853-2869.
  • Gaulier, J. M., & Huchon, P. H. I. L. I. P. P. E. (1991). Tectonic evolution of Afar triple junction. Bulletin de la Société géologique de France, 162(3), 451-464
  • Varet, J. (2021). Relationship of the Pan-African Tectonic Structures with the Opening of the Afar Triple Junction. The Geology of the Arabian-Nubian Shield, 737-771.
  • Awaleh, M.O.; Boschetti, T.; Adaneh, A.E.; Daoud, M.A.; Ahmed, M.M.; Dabar, O.A.; Soubaneh, Y.D.; Kawalieh, A.D.; Kadieh, I.H. (2020). Hydrochemistry and multi-isotope study of the waters from Hanlé-Gaggadé grabens (Republic of Djibouti, East African Rift System): A low-enthalpy geothermal resource from a transboundary aquifer. Geothermics 86, 101805.
  • De Vivo, B. and Frezzotti, M.L. (1994). Fluid inclusions in minerals: methods and applications. Short course of the working group (IMA) “Inclusions in Minerals” Pontignano/Siena 14 Sept. 1994, Fluids Research Laboratory, Department of Geological Sciences, YPI, Blacksburg, VA, USA.
  • Randive, K. R., Hari, K. R., Dora, M. L., Malpe, D. B., & Bhondwe, A. A. (2014). Study of fluid inclusions: methods, techniques and applications. Geological Magazine, 29(1 and 2), 19-28.
  • Touret, J. (1977, April). The significance of fluid inclusions in metamorphic rocks. In Thermodynamics in Geology: Proceedings of the NATO Advanced Study Institute held in Oxford, England, September 17–27, 1976 (pp. 203-227). Dordrecht: Springer Netherlands.
  • Van den Kerkhof, A. M., & Hein, U. F. (2001). Fluid inclusion petrography. Lithos, 55(1-4), 27-47. Roedder, E. (1972). Composition of fluid inclusions (No. 440-JJ).
  • Parry, W. T. (1998). Fault-fluid compositions from fluid-inclusion observations and solubilities of fracture-sealing minerals. Tectonophysics, 290(1-2), 1-26.
  • Stoops, G. (2021). Guidelines for analysis and description of soil and regolith thin sections (Vol. 184). John Wiley & Sons.
  • Chaplin, I. (1998). Preparation of Thin Sections. Microscopy Today, 6(7), 8-9.
  • Sumotarto, U., Irawan, A., & Hendrasto, F. (2020). Study of Hydrothermal Alteration Based on Analysis of X-Ray Diffraction at Cisolok Geothermal Area, Sukabumi District, West Java. In Proceedings World Geothermal Congress (Vol. 1).
  • Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C., & Takase, H. (2007). Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals. Physics and Chemistry of the Earth, Parts A/B/C, 32(1-7), 287-297.
  • Bish, D. L., Reynolds, R. C., & Post, J. E. (1989). Sample preparation for X-ray diffraction. Modern powder diffraction, 20, 73-99.
  • Bodnar, R.J. (1994). Philosophy of fluid inclusions analysis. In: De Vivo and M.L. Frezzotti (Eds.), Fluid Inclusions in Minerals and Applications. Virginia Tech, Blacksburg, VA, pp.1–6.
  • Moore, J. N., Adams, M. C., & Anderson, A. J. (2000). The fluid inclusion and mineralogic record of the transition from liquid-to vapor-dominated conditions in the Geysers geothermal system, California. Economic Geology, 95(8), 1719-1737
  • Roedder, E. (1963). Studies of fluid inclusions;[Part] 2, Freezing data and their interpretation. Economic geology, 58(2), 167-211.
  • So, C. S., Shelton, K. L., Chi, S. J., & Yun, S. T. (1991). Geochemical studies of the Gyeongchang W-Mo Mine, Republic of Korea; progressive meteoric water inundation of a magmatic hydrothermal system. Economic Geology, 86(4), 750-767.
  • Aydın Ertuğrul N., Hatipoğlu Bağcı Z., Lütfi Ertuğrul Ö., (2018). Aquifer Thermal Energy Storage Systems: Basic Concepts and General Design Methods. Turkish Journal of Engineering, 2 (2), 38 – 48.
  • Gebrehiwot M.K. (2010). Subsurface geology, hydrothermal alteration and geothermal model of Northern Skarðsmýrarfjall, Hellisheiði geothermal field, SW Iceland. University of Iceland, Faculty of Geosciences, UNU-GTP, Iceland, report 5, 65 pp.
  • Kristmannsdóttir, H. (1979). Alteration of basaltic rocks by hydrothermal activity at 100-300°C. In: Mortland, M.M., and Farmer, V.C. (editors), International Clay Conference 1978. Elsevier Scientific Publishing Co., Amsterdam, pp.359-367.
  • Kudo, A. M., & Weill, D. F. (1970). An igneous plagioclase thermometer. Contributions to Mineralogy and Petrology, 25(1), 52-65.
  • Eren M., Kadir S., and Akgöz M. (2017). Mineralogical, Geochemical and Micromorphological Characteristics of Calcite Precipitated from A Thin Cover of Recent Water Taken from The Stalagmites in Küpeli Cave, Esenpinar (Erdemli, Mersin), Southern Turkey. Turkish Journal of Engineering (TUJE), 1 (2), 44-51.
  • Beaufort, D., Papapanagiotou, P., Patrier, P., Fujimoto, K., & Kasai, K. (2021). High temperature smectites in active geothermal systems. In Water-Rock Interaction (pp. 493-496). Routledge.
  • Hedenquist, J.W., Arribas, A. and Gonzales-Urien, E. (2000). Exploration for Epithermal Gold Deposits, SEG Reviews, 13, pp.245–277.
  • Akben, Y. B. ., Yalçın , C. ., & Uras , Y. . (2023). Geology, mineralogy and geochemical signatures of carbonate-hosted Pb-Zn Deposit in margin fold belt: Dadağlı-Kahramanmaraş, Türkiye. Engineering Applications, 2(1), 60–68.
  • Ulu, A. E., Aydın, M. C., & Işık, E. (2022). Energy dissipation potential of flow separators placed in spillway flip bucket. Advanced Engineering Science, 2, 60–66.
There are 35 citations in total.

Details

Primary Language English
Subjects Experimental Methods in Fluid Flow, Heat and Mass Transfer
Journal Section Articles
Authors

Ali Ferat Bayram 0000-0001-5210-7836

Moussa Hassanleh Hassan 0009-0005-0759-5582

Early Pub Date January 17, 2025
Publication Date January 20, 2025
Submission Date July 3, 2024
Acceptance Date August 22, 2024
Published in Issue Year 2025

Cite

APA Bayram, A. F., & Hassanleh Hassan, M. (2025). Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti. Turkish Journal of Engineering, 9(1), 79-86. https://doi.org/10.31127/tuje.1509702
AMA Bayram AF, Hassanleh Hassan M. Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti. TUJE. January 2025;9(1):79-86. doi:10.31127/tuje.1509702
Chicago Bayram, Ali Ferat, and Moussa Hassanleh Hassan. “Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti”. Turkish Journal of Engineering 9, no. 1 (January 2025): 79-86. https://doi.org/10.31127/tuje.1509702.
EndNote Bayram AF, Hassanleh Hassan M (January 1, 2025) Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti. Turkish Journal of Engineering 9 1 79–86.
IEEE A. F. Bayram and M. Hassanleh Hassan, “Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti”, TUJE, vol. 9, no. 1, pp. 79–86, 2025, doi: 10.31127/tuje.1509702.
ISNAD Bayram, Ali Ferat - Hassanleh Hassan, Moussa. “Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti”. Turkish Journal of Engineering 9/1 (January 2025), 79-86. https://doi.org/10.31127/tuje.1509702.
JAMA Bayram AF, Hassanleh Hassan M. Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti. TUJE. 2025;9:79–86.
MLA Bayram, Ali Ferat and Moussa Hassanleh Hassan. “Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti”. Turkish Journal of Engineering, vol. 9, no. 1, 2025, pp. 79-86, doi:10.31127/tuje.1509702.
Vancouver Bayram AF, Hassanleh Hassan M. Alteration Mineralogy and Fluid Inclusion Microthermometry of the Hes-Daba Area in Gagade, Republic of Djibouti. TUJE. 2025;9(1):79-86.
Flag Counter