Research Article
BibTex RIS Cite
Year 2020, , 209 - 217, 01.10.2020
https://doi.org/10.31127/tuje.648882

Abstract

References

  • Álvarez-Torrellas, S., Ribeiro, R. S., Gomes, H. T., Ovejero, G., & García, J. (2016). “Removal of antibiotic compounds by adsorption using glycerol-based carbon materials”. Chemical Engineering Journal, Vol. 296, pp. 277-288.
  • Balarak, D., Mostafapour, F. K., & Azarpira, H. (2016). “Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent.” International Journal of Pharmacy and Technology, Vol. 8, No. 3, pp. 16664-16675.
  • Bao, X., Qiang, Z., Ling, W., & Chang, J. H. (2013). “Sonohydrothermal synthesis of MFe2O4 magnetic nanoparticles for adsorptive removal of tetracyclines from water.” Separation and Purification Technology, Vol.117, pp.104-110.
  • Cao, J., Yang, Z. H., Xiong, W. P., Zhou, Y. Y., Peng, Y. R., Li, X., ... & Zhang, Y. R. (2018). “One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis.” Chemical Engineering Journal, Vol. 353, pp.126-137.
  • Chang, P. H., Li, Z., Jean, J. S., Jiang, W. T., Wang, C. J.,& Lin, K. H. (2012). “Adsorption of tetracycline on 2: 1 layered non-swelling clay mineral illite.” Applied Clay Science, Vol. 67, pp. 158-163.
  • Dong, H., Jiang, Z., Zhang, C., Deng, J., Hou, K., Cheng, Y., ... & Zeng, G. (2018). “Removal of tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution.” Journal of colloid and interface science, Vol. 513, pp. 117-125.
  • Erşan, M., Bağda, E., & Bağda, E. (2013). “Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels.” Colloids and surfaces B: Biointerfaces, Vol. 104, pp. 75-82.
  • Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S. M., & Su, X. (2012). “Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide.” Journal of colloid and interface science, Vol. 368, No.1, pp.540-546.
  • Güler, Ü. A. (2016). “Aljinat-TiO2-Alg Kompozitinin Sentezi ve Sulu Çözeltilerden Tetrasiklin Gideriminde Kullanılabilirliği ve Karakterizasyonu.” Karaelmas Science and Engineering Journal, Vol. 6, No.1, pp. 130-135.
  • Huang, B., Liu, Y., Li, B., Liu, S., Zeng, G., Zeng, Z., ... & Yang, C. (2017). “Effect of Cu (II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2 Chitosan/graphen oxide nanocomposite.” Carbohydrate polymers, Vol. 157, pp. 576-585.
  • Ji, L., Chen, W., Bi, J., Zheng, S., Xu, Z., Zhu, D., & Alvarez, P. J. (2010). “Adsorption of tetracycline on single‐walled and multi‐walled carbon nanotubes as affected by aqueous solution chemistry.” Environmental toxicology and chemistry, Vol. 29, No. 12, pp. 2713-2719.
  • Kang, J., Liu, H., Zheng, Y. M., Qu, J., & Chen, J. P. (2010). “Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan.” Journal of Colloid and Interface Science, Vol. 344, No.1, pp.117-125.
  • Li, W. C., & Wong, M. H. (2015). “A comparative study on tetracycline sorption by Pachydictyon coriaceum and Sargassumhemiphyllum.” International journal of environmental science and technology, Vol. 12, No. 8, pp. 2731-2740.
  • Li, Z., Schulz, L., Ackley, C., & Fenske, N. (2010). “Adsorption of tetracycline on kaolinite with pHdependent surface charges.” Journal of colloid and interface science, Vol. 351, No.1, pp. 254-260.
  • Malik, P. K. (2004). “Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics.” Journal of Hazardous Materials, Vol. 113, No.1-3, pp. 81-88.
  • Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2007). “Adsorptive removal of Auramine-O: Kinetic and equilibrium study.” Journal of Hazardous materials, Vol. 143, No.(1-2), pp. 386-395.
  • Manigandan, R., Giribabu, K., Suresh, R., Vijayalakshmi, L., Stephen, A., & Narayanan, V. (2013). “Cobalt oxide nanoparticles: characterization and its electrocatalytic activity towards nitrobenzene.” Chemical Science Transactions, Vol. 2, No.1, pp. 47-S50.
  • Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A., Bandoch, G. F.,& Almeida, V. C. (2015). “Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies.” Chemical Engineering Journal, Vol. 260, pp. 291-299.
  • Mote, V. D., Purushotham, Y., & Dole, B. N. (2012). “Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles.” Journal of Theoretical and Applied Physics, Vol.6, No.1, pp.6.
  • Parolo, M. E., Savini, M. C., Valles, J. M., Baschini, M. T., & Avena, M. J. (2008). “Tetracycline adsorption on montmorillonite: pH and ionic strength effects.” Applied Clay Science, Vol. 40, No. 1-4, pp.179-186.
  • Roca Jalil, M., Toschi, F., Baschini, M., & Sapag, K. (2018). “Silica Pillared Montmorillonites as Possible Adsorbents of Antibiotics from Water Media.” Applied Sciences, Vol. 8, No. 8, pp.1403.
  • Shi, Y., Yang, Z., Wang, B., An, H., Chen, Z., & Cui, H. (2016). “Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskitesupported Cu2O–TiO2 composite.” Applied Clay Science, Vol. 119, pp. 311-320.
  • Takdastan, A., Mahvi, A. H., Lima, E. C., Shirmardi, M., Babaei, A. A., Goudarzi, G., ... & Vosoughi, M. (2016). “Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions.” Water Science and Technology, Vol. 74, No.10, pp. 2349-2363.
  • Tian, N., Jia, Q., Su, H., Zhi, Y., Ma, A., Wu, J., & Shan, S. (2016). “The synthesis of mesostructured NH 2-MIL101 (Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions.” Journal of Porous Materials, Vol. 23, No. 5, pp. 1269-1278.
  • Turku, I., Sainio, T., & Paatero, E. (2007). “Thermodynamics of tetracycline adsorption on silica.” Environmental Chemistry Letters, Vol. 5, No. 4, pp. 225-228.
  • Uzunoğlu, D., & Özer, A. (2016). “Adsorption of Acid Blue 121 dye on fish (Dicentrarchus labrax) scales, the extracted from fish scales and commercial hydroxyapatite: equilibrium, kinetic, thermodynamic, and characterization studies.” Desalination and Water Treatment, Vol. 57, No. 30, pp.14109-14131.
  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). “Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics.” Chemical Engineering Journal, Vol. 153, No. (1-3), pp. 1-8.
  • Yu, X., Lu, Z., Wu, D., Yu, P., He, M., Chen, T., ... & Feng, Y. (2014). “Heteropolyacid–chitosan/TiO2 composites for the degradation of tetracycline hydrochloride solution.” Reaction Kinetics, Mechanisms and Catalysis, Vol.111, No. 1, pp. 347-360.
  • Zhao, X., Wang, W., Zhang, Y., Wu, S., Li, F., & Liu, J. P. (2014). “Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red.” Chemical Engineering Journal, Vol. 250, pp.164-174.
  • Zhao, Y., Geng, J., Wang, X., Gu, X., & Gao, S. (2011). “Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances.” Journal of colloid and interface science, Vol. 361 No. 1, pp. 247-251.

EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES

Year 2020, , 209 - 217, 01.10.2020
https://doi.org/10.31127/tuje.648882

Abstract

In the present study cobalt oxide/iron oxide bimetallic nanoparticles (Co3O4/Fe3O4 NPs) were synthesized by chemical coprecipitation method. The synthesized Co3O4/Fe3O4 NPs were characterized by SEM and XRD analysis. The synthesized nanoparticles were used as an adsorbent for the removal of a kind of antibiotic as Tetracycline (TC) from aqueous solutions. According to characterization results, small plate-like structures and agglomerated irregular spherical nanosized particles (101.85 ± 15.04 nm) were formed. The XRD data confirmed the structure of synthesized adsorbent was Co3O4/Fe3O4. The optimum tetracycline adsorption conditions were determined as the initial pH of solution 9.0, temperature 55°C, and adsorbent concentration 3.0 g/L. A linear increase was observed in equilibrium uptakes of TC with the increasing the initial antibiotic concentrations. The experimental equilibrium data was modelled with Langmuir and Freundlich isotherm models. The experimental equilibrium data was the best agreement to the Langmuir isotherm model. The maximum monolayer coverage capacity of Co3O4/Fe3O4 NPs for TC adsorption was found to be 149.26 mg/g at 55°C optimum temperature. The experimental kinetic adsorption data were defined as the best agreement with the pseudo-second-order kinetic model. Weber Morris mass transfer modelling results showed that both the film (boundary layer) and intra-particle diffusion were effective in the adsorption process. The thermodynamic studies suggested that the adsorption process was endothermic, spontaneous and the positive ΔS value indicated increased disorder at the solid-solution interface during the adsorption. Moreover, the synthesized adsorbent showed high adsorption efficiencies at the end of seven sequence usages. 

References

  • Álvarez-Torrellas, S., Ribeiro, R. S., Gomes, H. T., Ovejero, G., & García, J. (2016). “Removal of antibiotic compounds by adsorption using glycerol-based carbon materials”. Chemical Engineering Journal, Vol. 296, pp. 277-288.
  • Balarak, D., Mostafapour, F. K., & Azarpira, H. (2016). “Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent.” International Journal of Pharmacy and Technology, Vol. 8, No. 3, pp. 16664-16675.
  • Bao, X., Qiang, Z., Ling, W., & Chang, J. H. (2013). “Sonohydrothermal synthesis of MFe2O4 magnetic nanoparticles for adsorptive removal of tetracyclines from water.” Separation and Purification Technology, Vol.117, pp.104-110.
  • Cao, J., Yang, Z. H., Xiong, W. P., Zhou, Y. Y., Peng, Y. R., Li, X., ... & Zhang, Y. R. (2018). “One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis.” Chemical Engineering Journal, Vol. 353, pp.126-137.
  • Chang, P. H., Li, Z., Jean, J. S., Jiang, W. T., Wang, C. J.,& Lin, K. H. (2012). “Adsorption of tetracycline on 2: 1 layered non-swelling clay mineral illite.” Applied Clay Science, Vol. 67, pp. 158-163.
  • Dong, H., Jiang, Z., Zhang, C., Deng, J., Hou, K., Cheng, Y., ... & Zeng, G. (2018). “Removal of tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution.” Journal of colloid and interface science, Vol. 513, pp. 117-125.
  • Erşan, M., Bağda, E., & Bağda, E. (2013). “Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels.” Colloids and surfaces B: Biointerfaces, Vol. 104, pp. 75-82.
  • Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S. M., & Su, X. (2012). “Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide.” Journal of colloid and interface science, Vol. 368, No.1, pp.540-546.
  • Güler, Ü. A. (2016). “Aljinat-TiO2-Alg Kompozitinin Sentezi ve Sulu Çözeltilerden Tetrasiklin Gideriminde Kullanılabilirliği ve Karakterizasyonu.” Karaelmas Science and Engineering Journal, Vol. 6, No.1, pp. 130-135.
  • Huang, B., Liu, Y., Li, B., Liu, S., Zeng, G., Zeng, Z., ... & Yang, C. (2017). “Effect of Cu (II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2 Chitosan/graphen oxide nanocomposite.” Carbohydrate polymers, Vol. 157, pp. 576-585.
  • Ji, L., Chen, W., Bi, J., Zheng, S., Xu, Z., Zhu, D., & Alvarez, P. J. (2010). “Adsorption of tetracycline on single‐walled and multi‐walled carbon nanotubes as affected by aqueous solution chemistry.” Environmental toxicology and chemistry, Vol. 29, No. 12, pp. 2713-2719.
  • Kang, J., Liu, H., Zheng, Y. M., Qu, J., & Chen, J. P. (2010). “Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan.” Journal of Colloid and Interface Science, Vol. 344, No.1, pp.117-125.
  • Li, W. C., & Wong, M. H. (2015). “A comparative study on tetracycline sorption by Pachydictyon coriaceum and Sargassumhemiphyllum.” International journal of environmental science and technology, Vol. 12, No. 8, pp. 2731-2740.
  • Li, Z., Schulz, L., Ackley, C., & Fenske, N. (2010). “Adsorption of tetracycline on kaolinite with pHdependent surface charges.” Journal of colloid and interface science, Vol. 351, No.1, pp. 254-260.
  • Malik, P. K. (2004). “Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics.” Journal of Hazardous Materials, Vol. 113, No.1-3, pp. 81-88.
  • Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2007). “Adsorptive removal of Auramine-O: Kinetic and equilibrium study.” Journal of Hazardous materials, Vol. 143, No.(1-2), pp. 386-395.
  • Manigandan, R., Giribabu, K., Suresh, R., Vijayalakshmi, L., Stephen, A., & Narayanan, V. (2013). “Cobalt oxide nanoparticles: characterization and its electrocatalytic activity towards nitrobenzene.” Chemical Science Transactions, Vol. 2, No.1, pp. 47-S50.
  • Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A., Bandoch, G. F.,& Almeida, V. C. (2015). “Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies.” Chemical Engineering Journal, Vol. 260, pp. 291-299.
  • Mote, V. D., Purushotham, Y., & Dole, B. N. (2012). “Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles.” Journal of Theoretical and Applied Physics, Vol.6, No.1, pp.6.
  • Parolo, M. E., Savini, M. C., Valles, J. M., Baschini, M. T., & Avena, M. J. (2008). “Tetracycline adsorption on montmorillonite: pH and ionic strength effects.” Applied Clay Science, Vol. 40, No. 1-4, pp.179-186.
  • Roca Jalil, M., Toschi, F., Baschini, M., & Sapag, K. (2018). “Silica Pillared Montmorillonites as Possible Adsorbents of Antibiotics from Water Media.” Applied Sciences, Vol. 8, No. 8, pp.1403.
  • Shi, Y., Yang, Z., Wang, B., An, H., Chen, Z., & Cui, H. (2016). “Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskitesupported Cu2O–TiO2 composite.” Applied Clay Science, Vol. 119, pp. 311-320.
  • Takdastan, A., Mahvi, A. H., Lima, E. C., Shirmardi, M., Babaei, A. A., Goudarzi, G., ... & Vosoughi, M. (2016). “Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions.” Water Science and Technology, Vol. 74, No.10, pp. 2349-2363.
  • Tian, N., Jia, Q., Su, H., Zhi, Y., Ma, A., Wu, J., & Shan, S. (2016). “The synthesis of mesostructured NH 2-MIL101 (Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions.” Journal of Porous Materials, Vol. 23, No. 5, pp. 1269-1278.
  • Turku, I., Sainio, T., & Paatero, E. (2007). “Thermodynamics of tetracycline adsorption on silica.” Environmental Chemistry Letters, Vol. 5, No. 4, pp. 225-228.
  • Uzunoğlu, D., & Özer, A. (2016). “Adsorption of Acid Blue 121 dye on fish (Dicentrarchus labrax) scales, the extracted from fish scales and commercial hydroxyapatite: equilibrium, kinetic, thermodynamic, and characterization studies.” Desalination and Water Treatment, Vol. 57, No. 30, pp.14109-14131.
  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). “Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics.” Chemical Engineering Journal, Vol. 153, No. (1-3), pp. 1-8.
  • Yu, X., Lu, Z., Wu, D., Yu, P., He, M., Chen, T., ... & Feng, Y. (2014). “Heteropolyacid–chitosan/TiO2 composites for the degradation of tetracycline hydrochloride solution.” Reaction Kinetics, Mechanisms and Catalysis, Vol.111, No. 1, pp. 347-360.
  • Zhao, X., Wang, W., Zhang, Y., Wu, S., Li, F., & Liu, J. P. (2014). “Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red.” Chemical Engineering Journal, Vol. 250, pp.164-174.
  • Zhao, Y., Geng, J., Wang, X., Gu, X., & Gao, S. (2011). “Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances.” Journal of colloid and interface science, Vol. 361 No. 1, pp. 247-251.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muhammed Musa This is me 0000-0002-8646-8354

Hatice Hasan This is me 0000-0002-4643-1282

Hülya Malkoç This is me 0000-0003-0572-6727

Memduha Ergüt 0000-0001-7297-1533

Deniz Uzunoğlu This is me 0000-0001-9706-303X

Ayla Özer This is me 0000-0002-7824-238X

Publication Date October 1, 2020
Published in Issue Year 2020

Cite

APA Musa, M., Hasan, H., Malkoç, H., Ergüt, M., et al. (2020). EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES. Turkish Journal of Engineering, 4(4), 209-217. https://doi.org/10.31127/tuje.648882
AMA Musa M, Hasan H, Malkoç H, Ergüt M, Uzunoğlu D, Özer A. EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES. TUJE. October 2020;4(4):209-217. doi:10.31127/tuje.648882
Chicago Musa, Muhammed, Hatice Hasan, Hülya Malkoç, Memduha Ergüt, Deniz Uzunoğlu, and Ayla Özer. “EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES”. Turkish Journal of Engineering 4, no. 4 (October 2020): 209-17. https://doi.org/10.31127/tuje.648882.
EndNote Musa M, Hasan H, Malkoç H, Ergüt M, Uzunoğlu D, Özer A (October 1, 2020) EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES. Turkish Journal of Engineering 4 4 209–217.
IEEE M. Musa, H. Hasan, H. Malkoç, M. Ergüt, D. Uzunoğlu, and A. Özer, “EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES”, TUJE, vol. 4, no. 4, pp. 209–217, 2020, doi: 10.31127/tuje.648882.
ISNAD Musa, Muhammed et al. “EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES”. Turkish Journal of Engineering 4/4 (October 2020), 209-217. https://doi.org/10.31127/tuje.648882.
JAMA Musa M, Hasan H, Malkoç H, Ergüt M, Uzunoğlu D, Özer A. EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES. TUJE. 2020;4:209–217.
MLA Musa, Muhammed et al. “EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES”. Turkish Journal of Engineering, vol. 4, no. 4, 2020, pp. 209-17, doi:10.31127/tuje.648882.
Vancouver Musa M, Hasan H, Malkoç H, Ergüt M, Uzunoğlu D, Özer A. EFFECTIVE ADSORPTION OF TETRACYCLINE WITH Co3O4/Fe3O4 BIMETALLIC NANOPARTICLES. TUJE. 2020;4(4):209-17.
Flag Counter