Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 3, 94 - 97, 01.09.2018
https://doi.org/10.31127/tuje.363596

Abstract

References

  • Arola, D.F., Barrall, G.A., Powell, R.L., McCarthy, K.L. and McCarthy, M.J., (1997). “Use of nuclear magnetic imaging as a viscometer for process monitoring.” Chem. Eng. Sci., Vol. 52, No. 13, pp 2049–2057.
  • Arola, D. F., Powell, R. L., Barrall, G. A. and McCarthy, M. J. (1998). “A simplified method for accuracy estimation of nuclear magnetic resonant imaging.” Rev. Sci. Instrum. Vol. 69, No. 13, pp. 3300–3307.
  • Arola, D. F., Powell, R. L., Barrall, G. A. and McCarthy, M. J. (1999) “Pointwise observation for rheological characterization using nuclear magnetic resonance imaging.” J. Rheol. Vol. 43, No. 1, pp. 9–30.
  • Benchabane, A. and Bekkour, K. (2008). “Rheological properties of carboxymethyl cellulose (CMC) solutions.” Colloid Polym. Sci. Vol. 286, No. 10, pp.1173–1180.
  • Callaghan, P. T. (1999). “Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids.” Reports Prog. Phys. Vol. 62, No. 4, pp. 599–670.
  • Choi, Y. J., McCarthy, K. L. and McCarthy, M. J. (2005) “A MATLAB graphical user interface program for tomographic viscometer data processing.” Comput. Electron. Agric. Vol. 47, No. 3, pp.59–67.
  • Nguyen, Q. D. and Boger, D. V. (1992). “Measuring the flow properties of yield stress fluids.” Annu. Rev. Fluid Mech. Vol. 24, No. 1, pp. 47–88.
  • Tozzi E.J., Bacca L.A., Hartt W.H., McCarthy, K.L. and M.J. McCarthy (2012). “Robust processing of capillary velocimetry data via stress-rescaled velocity functions.” J. Rheol., Vol. 56, No. 6, pp. 1464-1499.

RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI)

Year 2018, Volume: 2 Issue: 3, 94 - 97, 01.09.2018
https://doi.org/10.31127/tuje.363596

Abstract

In this study, the application of Magnetic Resonance Imaging (MRI) rheometry on the measurement of complex fluid Carboxylmethyl cellulose (CMC)-water solutions (0.5%, 1.0%, 1.5%, 2.0% w/w) flow was described. Depending on CMC concentration, Power law or Herschel-Bulkley models gave the best fit according to MRI and conventional rheometer (CVO) results. Power Law model was valid for 0.5% and 1.0% CMC (R2=0.9993-R2=0.9987 and R2=0.9983-R2=0.9985 respectively by MRI and CVO). On the other hand, 1.5% and 2.0% CMC solutions flow were well described by Herschel–Bulkley model (R2=0.9994-R2=0.9996 and R2=0.9986-R2=0.9981 respectively by MRI and CVO). The MRImeasurements agreed well with the CVO measurements.

References

  • Arola, D.F., Barrall, G.A., Powell, R.L., McCarthy, K.L. and McCarthy, M.J., (1997). “Use of nuclear magnetic imaging as a viscometer for process monitoring.” Chem. Eng. Sci., Vol. 52, No. 13, pp 2049–2057.
  • Arola, D. F., Powell, R. L., Barrall, G. A. and McCarthy, M. J. (1998). “A simplified method for accuracy estimation of nuclear magnetic resonant imaging.” Rev. Sci. Instrum. Vol. 69, No. 13, pp. 3300–3307.
  • Arola, D. F., Powell, R. L., Barrall, G. A. and McCarthy, M. J. (1999) “Pointwise observation for rheological characterization using nuclear magnetic resonance imaging.” J. Rheol. Vol. 43, No. 1, pp. 9–30.
  • Benchabane, A. and Bekkour, K. (2008). “Rheological properties of carboxymethyl cellulose (CMC) solutions.” Colloid Polym. Sci. Vol. 286, No. 10, pp.1173–1180.
  • Callaghan, P. T. (1999). “Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids.” Reports Prog. Phys. Vol. 62, No. 4, pp. 599–670.
  • Choi, Y. J., McCarthy, K. L. and McCarthy, M. J. (2005) “A MATLAB graphical user interface program for tomographic viscometer data processing.” Comput. Electron. Agric. Vol. 47, No. 3, pp.59–67.
  • Nguyen, Q. D. and Boger, D. V. (1992). “Measuring the flow properties of yield stress fluids.” Annu. Rev. Fluid Mech. Vol. 24, No. 1, pp. 47–88.
  • Tozzi E.J., Bacca L.A., Hartt W.H., McCarthy, K.L. and M.J. McCarthy (2012). “Robust processing of capillary velocimetry data via stress-rescaled velocity functions.” J. Rheol., Vol. 56, No. 6, pp. 1464-1499.
There are 8 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Guler Bengusu Tezel 0000-0002-0671-208X

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

APA Tezel, G. B. (2018). RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI). Turkish Journal of Engineering, 2(3), 94-97. https://doi.org/10.31127/tuje.363596
AMA Tezel GB. RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI). TUJE. September 2018;2(3):94-97. doi:10.31127/tuje.363596
Chicago Tezel, Guler Bengusu. “RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI)”. Turkish Journal of Engineering 2, no. 3 (September 2018): 94-97. https://doi.org/10.31127/tuje.363596.
EndNote Tezel GB (September 1, 2018) RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI). Turkish Journal of Engineering 2 3 94–97.
IEEE G. B. Tezel, “RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI)”, TUJE, vol. 2, no. 3, pp. 94–97, 2018, doi: 10.31127/tuje.363596.
ISNAD Tezel, Guler Bengusu. “RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI)”. Turkish Journal of Engineering 2/3 (September 2018), 94-97. https://doi.org/10.31127/tuje.363596.
JAMA Tezel GB. RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI). TUJE. 2018;2:94–97.
MLA Tezel, Guler Bengusu. “RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI)”. Turkish Journal of Engineering, vol. 2, no. 3, 2018, pp. 94-97, doi:10.31127/tuje.363596.
Vancouver Tezel GB. RHEOLOGICAL PARAMETER ESTIMATION OF CMC-WATER SOLUTIONS USING MAGNETIC RESONANCE IMAGING (MRI). TUJE. 2018;2(3):94-7.
Flag Counter