Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 2, 97 - 103, 01.04.2020
https://doi.org/10.31127/tuje.636350

Abstract

References

  • Bakan, G., S. Ayas, M. Serhatlioglu, C. Elbuken and A. Dana (2018). "Invisible Thin‐Film Patterns with Strong Infrared Emission as an Optical Security Feature." Advanced Optical Materials, Vol. 6, No. 21, pp. 1800613.
  • Bartholomeusz, D. A., R. W. Boutté and J. D. Andrade (2005). "Xurography: rapid prototyping of microstructures using a cutting plotter." Journal of Microelectromechanical systems, Vol. 14, No. 6, pp. 1364-1374.
  • Benton, M., M. R. Hossan, P. R. Konari and S. Gamagedara (2019). "Effect of process parameters and material properties on laser micromachining of microchannels." Micromachines, Vol. 10, No. 2, pp. 123.
  • Bilican, I., M. T. Guler, N. Gulener, M. Yuksel and S. Agan (2016). "Capacitive solvent sensing with interdigitated microelectrodes." Microsystem Technologies, Vol. 22, No. 3, pp. 659-668.
  • de Santana, P. P., T. P. Segato, E. Carrilho, R. S. Lima, N. Dossi, M. Y. Kamogawa, A. L. Gobbi, M. H. Piazzeta and E. Piccin (2013). "Fabrication of glass microchannels by xurography for electrophoresis applications." Analyst, Vol. 138, No. 6, pp. 1660-1664.
  • Delgadillo, J. O. V., S. Delorme, R. El-Ayoubi, R. DiRaddo and S. G. Hatzikiriakos (2010). "Effect of freezing on the passive mechanical properties of arterial samples." Journal of Biomedical Science and Engineering, Vol. 3, No. 07, pp. 645.
  • Duffy, D. C., J. C. McDonald, O. J. Schueller and G. M. Whitesides (1998). "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)." Analytical chemistry, Vol. 70, No. 23, pp. 4974-4984.
  • Gao, Y., H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng and F. Xiong (2017). "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring." Advanced Materials, Vol. 29, No. 39, pp. 1701985.
  • Gitlin, L., P. Schulze and D. Belder (2009). "Rapid replication of master structures by double casting with PDMS." Lab on a Chip, Vol. 9, No. 20, pp. 3000-3002.
  • Guler, M. T., P. Beyazkilic and C. Elbuken (2017). "A versatile plug microvalve for microfluidic applications." Sensors and Actuators A: Physical, Vol. 265, No., pp. 224-230.
  • Guler, M. T. and I. Bilican (2018). "Capacitive detection of single bacterium from drinking water with a detailed investigation of electrical flow cytometry." Sensors and Actuators A: Physical, Vol. 269, No., pp. 454-463.
  • Guler, M. T., I. Bilican, S. Agan and C. Elbuken (2015). "A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing." Journal of Micromechanics and Microengineering, Vol. 25, No. 9, pp. 095019.
  • Guler, M. T., Z. Isiksacan, M. Serhatlioglu and C. Elbuken (2018). "Self-powered disposable prothrombin time measurement device with an integrated effervescent pump." Sensors and Actuators B: Chemical, Vol. 273, No., pp. 350-357.
  • Guner, H., E. Ozgur, G. Kokturk, M. Celik, E. Esen, A. E. Topal, S. Ayas, Y. Uludag, C. Elbuken and A. Dana (2017). "A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection." Sensors and Actuators B: Chemical, Vol. 239, No., pp. 571-577.
  • Isgor, P. K., M. Marcali, M. Keser and C. Elbuken (2015). "Microfluidic droplet content detection using integrated capacitive sensors." Sensors and Actuators B: Chemical, Vol. 210, No., pp. 669-675.
  • Isiksacan, Z., M. Asghari and C. Elbuken (2017). "A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics." Microfluidics and Nanofluidics, Vol. 21, No. 3, pp. 44.
  • Isiksacan, Z., M. T. Guler, B. Aydogdu, I. Bilican and C. Elbuken (2016). "Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation." Journal of Micromechanics and Microengineering, Vol. 26, No. 3, pp. 035008.
  • Isiksacan, Z., N. Hastar, O. Erel and C. Elbuken (2018). "An optofluidic point-of-care device for quantitative investigation of erythrocyte aggregation during coagulation." Sensors and Actuators A: Physical, Vol. 281, No., pp. 24-30.
  • Kudo, H., T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki and K. Mitsubayashi (2006). "A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques." Biosensors and Bioelectronics, Vol. 22, No. 4, pp. 558-562.
  • Lee, T. Q. and S. L. Woo (1988). "A new method for determining cross-sectional shape and area of soft tissues." Journal of Biomechanical Engineering, Vol. 110, No. 2, pp. 110-114.
  • Lei, K. F., K.-F. Lee and M.-Y. Lee (2012). "Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement." Microelectronic Engineering, Vol. 99, No., pp. 1-5.
  • Li, M., S. Li, J. Wu, W. Wen, W. Li and G. Alici (2012). "A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer." Microfluidics and nanofluidics, Vol. 12, No. 5, pp. 751-760.
  • Lopes, R., R. O. Rodrigues, D. Pinho, V. Garcia, H. Schütte, R. Lima and S. Gassmann (2015). "Low cost microfluidic device for partial cell separation: Micromilling approach." 2015 IEEE International Conference on Industrial Technology (ICIT), pp.3347-3350.
  • Marcali, M. and C. Elbuken (2016). "Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets." Lab on a Chip, Vol. 16, No. 13, pp. 2494-2503.
  • Mohammed, M. I., M. N. H. Z. Alam, A. Kouzani and I. Gibson (2016). "Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly (methylmethacrylate) polymer." Journal of Micromechanics and Microengineering, Vol. 27, No. 1, pp. 015021.
  • Moon, J.-H., D. H. Baek, Y. Y. Choi, K. H. Lee, H. C. Kim and S.-H. Lee (2010). "Wearable polyimide–PDMS electrodes for intrabody communication." Journal of Micromechanics and Microengineering, Vol. 20, No. 2, pp. 025032.
  • Prakash, S. and S. Kumar (2018). "Pulse smearing and profile generation in CO2 laser micromachining on PMMA via raster scanning." Journal of Manufacturing Processes, Vol. 31, No., pp. 116-123.
  • Romoli, L., G. Tantussi and G. Dini (2011). "Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices." Optics and Lasers in Engineering, Vol. 49, No. 3, pp. 419-427.
  • Serhatlioglu, M., M. Asghari, M. Tahsin Guler and C. Elbuken (2019). "Impedance‐based viscoelastic flow cytometry." Electrophoresis, Vol. 40, No. 6, pp. 906-913.
  • Singhal, J., D. Pinho, R. Lopes, P. C Sousa, V. Garcia, H. Schütte, R. Lima and S. Gassmann (2015). "Blood flow visualization and measurements in microfluidic devices fabricated by a micromilling technique." Micro and Nanosystems, Vol. 7, No. 3, pp. 148-153.
  • Sun, Z., C. Yang, M. Eggersdorfer, J. Cui, Y. Li, M. Hai, D. Chen and D. A. Weitz (2019). "A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release." Chinese Chemical Letters, Vol., No.
  • Tavakoli, M., R. Rocha, L. Osorio, M. Almeida, A. De Almeida, V. Ramachandran, A. Tabatabai, T. Lu and C. Majidi (2017). "Carbon doped PDMS: Conductance stability over time and implications for additive manufacturing of stretchable electronics." Journal of Micromechanics and Microengineering, Vol. 27, No. 3, pp. 035010.
  • Zhou, X., L. Lau, W. W. L. Lam, S. W. N. Au and B. Zheng (2007). "Nanoliter dispensing method by degassed poly (dimethylsiloxane) microchannels and its application in protein crystallization." Analytical chemistry, Vol. 79, No. 13, pp. 4924-4930.
  • Zhu, B., Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo and X. Chen (2014). "Microstructured graphene arrays for highly sensitive flexible tactile sensors." Small, Vol. 10, No. 18, pp. 3625-3631.

A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS

Year 2020, Volume: 4 Issue: 2, 97 - 103, 01.04.2020
https://doi.org/10.31127/tuje.636350

Abstract

Thickness measurement is very critical especially in fabrication of micro and nano devices to determine the thickness of the layers. Stylus measurement is the easiest and most common technique that is being employed among the other thickness measurement methods. Micro-nano fabrication processes requires the usage of both rigid and soft materials. While thickness of a rigid material can be easily detected, thickness measurement of the soft materials presents some difficulties for standard stylus thickness measurement devices. Since the soft materials are deformed by the stylus due to the applied pressure, correct thickness measurement cannot be realized. Here, PDMS (Polydimethylsiloxane) is used as soft material for thickness measurement. By taking the replica of the soft material with liquid plastic which becomes rigid after curing, the depth can be measured easily via conventional stylus thickness measurement devices.

References

  • Bakan, G., S. Ayas, M. Serhatlioglu, C. Elbuken and A. Dana (2018). "Invisible Thin‐Film Patterns with Strong Infrared Emission as an Optical Security Feature." Advanced Optical Materials, Vol. 6, No. 21, pp. 1800613.
  • Bartholomeusz, D. A., R. W. Boutté and J. D. Andrade (2005). "Xurography: rapid prototyping of microstructures using a cutting plotter." Journal of Microelectromechanical systems, Vol. 14, No. 6, pp. 1364-1374.
  • Benton, M., M. R. Hossan, P. R. Konari and S. Gamagedara (2019). "Effect of process parameters and material properties on laser micromachining of microchannels." Micromachines, Vol. 10, No. 2, pp. 123.
  • Bilican, I., M. T. Guler, N. Gulener, M. Yuksel and S. Agan (2016). "Capacitive solvent sensing with interdigitated microelectrodes." Microsystem Technologies, Vol. 22, No. 3, pp. 659-668.
  • de Santana, P. P., T. P. Segato, E. Carrilho, R. S. Lima, N. Dossi, M. Y. Kamogawa, A. L. Gobbi, M. H. Piazzeta and E. Piccin (2013). "Fabrication of glass microchannels by xurography for electrophoresis applications." Analyst, Vol. 138, No. 6, pp. 1660-1664.
  • Delgadillo, J. O. V., S. Delorme, R. El-Ayoubi, R. DiRaddo and S. G. Hatzikiriakos (2010). "Effect of freezing on the passive mechanical properties of arterial samples." Journal of Biomedical Science and Engineering, Vol. 3, No. 07, pp. 645.
  • Duffy, D. C., J. C. McDonald, O. J. Schueller and G. M. Whitesides (1998). "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)." Analytical chemistry, Vol. 70, No. 23, pp. 4974-4984.
  • Gao, Y., H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng and F. Xiong (2017). "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring." Advanced Materials, Vol. 29, No. 39, pp. 1701985.
  • Gitlin, L., P. Schulze and D. Belder (2009). "Rapid replication of master structures by double casting with PDMS." Lab on a Chip, Vol. 9, No. 20, pp. 3000-3002.
  • Guler, M. T., P. Beyazkilic and C. Elbuken (2017). "A versatile plug microvalve for microfluidic applications." Sensors and Actuators A: Physical, Vol. 265, No., pp. 224-230.
  • Guler, M. T. and I. Bilican (2018). "Capacitive detection of single bacterium from drinking water with a detailed investigation of electrical flow cytometry." Sensors and Actuators A: Physical, Vol. 269, No., pp. 454-463.
  • Guler, M. T., I. Bilican, S. Agan and C. Elbuken (2015). "A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing." Journal of Micromechanics and Microengineering, Vol. 25, No. 9, pp. 095019.
  • Guler, M. T., Z. Isiksacan, M. Serhatlioglu and C. Elbuken (2018). "Self-powered disposable prothrombin time measurement device with an integrated effervescent pump." Sensors and Actuators B: Chemical, Vol. 273, No., pp. 350-357.
  • Guner, H., E. Ozgur, G. Kokturk, M. Celik, E. Esen, A. E. Topal, S. Ayas, Y. Uludag, C. Elbuken and A. Dana (2017). "A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection." Sensors and Actuators B: Chemical, Vol. 239, No., pp. 571-577.
  • Isgor, P. K., M. Marcali, M. Keser and C. Elbuken (2015). "Microfluidic droplet content detection using integrated capacitive sensors." Sensors and Actuators B: Chemical, Vol. 210, No., pp. 669-675.
  • Isiksacan, Z., M. Asghari and C. Elbuken (2017). "A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics." Microfluidics and Nanofluidics, Vol. 21, No. 3, pp. 44.
  • Isiksacan, Z., M. T. Guler, B. Aydogdu, I. Bilican and C. Elbuken (2016). "Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation." Journal of Micromechanics and Microengineering, Vol. 26, No. 3, pp. 035008.
  • Isiksacan, Z., N. Hastar, O. Erel and C. Elbuken (2018). "An optofluidic point-of-care device for quantitative investigation of erythrocyte aggregation during coagulation." Sensors and Actuators A: Physical, Vol. 281, No., pp. 24-30.
  • Kudo, H., T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki and K. Mitsubayashi (2006). "A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques." Biosensors and Bioelectronics, Vol. 22, No. 4, pp. 558-562.
  • Lee, T. Q. and S. L. Woo (1988). "A new method for determining cross-sectional shape and area of soft tissues." Journal of Biomechanical Engineering, Vol. 110, No. 2, pp. 110-114.
  • Lei, K. F., K.-F. Lee and M.-Y. Lee (2012). "Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement." Microelectronic Engineering, Vol. 99, No., pp. 1-5.
  • Li, M., S. Li, J. Wu, W. Wen, W. Li and G. Alici (2012). "A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer." Microfluidics and nanofluidics, Vol. 12, No. 5, pp. 751-760.
  • Lopes, R., R. O. Rodrigues, D. Pinho, V. Garcia, H. Schütte, R. Lima and S. Gassmann (2015). "Low cost microfluidic device for partial cell separation: Micromilling approach." 2015 IEEE International Conference on Industrial Technology (ICIT), pp.3347-3350.
  • Marcali, M. and C. Elbuken (2016). "Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets." Lab on a Chip, Vol. 16, No. 13, pp. 2494-2503.
  • Mohammed, M. I., M. N. H. Z. Alam, A. Kouzani and I. Gibson (2016). "Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly (methylmethacrylate) polymer." Journal of Micromechanics and Microengineering, Vol. 27, No. 1, pp. 015021.
  • Moon, J.-H., D. H. Baek, Y. Y. Choi, K. H. Lee, H. C. Kim and S.-H. Lee (2010). "Wearable polyimide–PDMS electrodes for intrabody communication." Journal of Micromechanics and Microengineering, Vol. 20, No. 2, pp. 025032.
  • Prakash, S. and S. Kumar (2018). "Pulse smearing and profile generation in CO2 laser micromachining on PMMA via raster scanning." Journal of Manufacturing Processes, Vol. 31, No., pp. 116-123.
  • Romoli, L., G. Tantussi and G. Dini (2011). "Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices." Optics and Lasers in Engineering, Vol. 49, No. 3, pp. 419-427.
  • Serhatlioglu, M., M. Asghari, M. Tahsin Guler and C. Elbuken (2019). "Impedance‐based viscoelastic flow cytometry." Electrophoresis, Vol. 40, No. 6, pp. 906-913.
  • Singhal, J., D. Pinho, R. Lopes, P. C Sousa, V. Garcia, H. Schütte, R. Lima and S. Gassmann (2015). "Blood flow visualization and measurements in microfluidic devices fabricated by a micromilling technique." Micro and Nanosystems, Vol. 7, No. 3, pp. 148-153.
  • Sun, Z., C. Yang, M. Eggersdorfer, J. Cui, Y. Li, M. Hai, D. Chen and D. A. Weitz (2019). "A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release." Chinese Chemical Letters, Vol., No.
  • Tavakoli, M., R. Rocha, L. Osorio, M. Almeida, A. De Almeida, V. Ramachandran, A. Tabatabai, T. Lu and C. Majidi (2017). "Carbon doped PDMS: Conductance stability over time and implications for additive manufacturing of stretchable electronics." Journal of Micromechanics and Microengineering, Vol. 27, No. 3, pp. 035010.
  • Zhou, X., L. Lau, W. W. L. Lam, S. W. N. Au and B. Zheng (2007). "Nanoliter dispensing method by degassed poly (dimethylsiloxane) microchannels and its application in protein crystallization." Analytical chemistry, Vol. 79, No. 13, pp. 4924-4930.
  • Zhu, B., Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo and X. Chen (2014). "Microstructured graphene arrays for highly sensitive flexible tactile sensors." Small, Vol. 10, No. 18, pp. 3625-3631.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mustafa Tahsin Guler 0000-0002-0478-3183

İsmail Bilican This is me 0000-0002-4415-6803

Publication Date April 1, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Guler, M. T., & Bilican, İ. (2020). A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS. Turkish Journal of Engineering, 4(2), 97-103. https://doi.org/10.31127/tuje.636350
AMA Guler MT, Bilican İ. A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS. TUJE. April 2020;4(2):97-103. doi:10.31127/tuje.636350
Chicago Guler, Mustafa Tahsin, and İsmail Bilican. “A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS”. Turkish Journal of Engineering 4, no. 2 (April 2020): 97-103. https://doi.org/10.31127/tuje.636350.
EndNote Guler MT, Bilican İ (April 1, 2020) A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS. Turkish Journal of Engineering 4 2 97–103.
IEEE M. T. Guler and İ. Bilican, “A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS”, TUJE, vol. 4, no. 2, pp. 97–103, 2020, doi: 10.31127/tuje.636350.
ISNAD Guler, Mustafa Tahsin - Bilican, İsmail. “A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS”. Turkish Journal of Engineering 4/2 (April 2020), 97-103. https://doi.org/10.31127/tuje.636350.
JAMA Guler MT, Bilican İ. A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS. TUJE. 2020;4:97–103.
MLA Guler, Mustafa Tahsin and İsmail Bilican. “A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS”. Turkish Journal of Engineering, vol. 4, no. 2, 2020, pp. 97-103, doi:10.31127/tuje.636350.
Vancouver Guler MT, Bilican İ. A NEW METHOD FOR THE MEASUREMENT OF SOFT MATERIAL THICKNESS. TUJE. 2020;4(2):97-103.
Flag Counter