Research Article
BibTex RIS Cite

Microstructural analysis of ZnO-CuPc nanocomposites synthenised by hydrothermal method

Year 2021, Volume: 5 Issue: 3, 105 - 110, 01.07.2021
https://doi.org/10.31127/tuje.695630

Abstract

With the discovery of inorganic semiconductors, silicon and germanium became very important materials in the field of electronics. The use of these materials with these limited features for a long time has become insufficient in the face of increasing demands. For this reason, organic semiconductors have revolutionized structures that respond to these demands. In this study, we synthesized ZnO based semi-material with the hydrothermal method. Structural characterizations were made by XRD, SEM (EDX) and FTIR. 

Supporting Institution

Firat university

Project Number

FF.16.33.

Thanks

This work is financially supported by FÜBAP, Project No: FF.16.33.

References

  • Güler Ö, Güler S H, Başgöz Ö, Albayrak M G & Yahia I S (2019). Synthesis and characterization of ZnO-reinforced with graphene nanolayer nanocomposites: electrical conductivity and optical band gap analysis. Materials Research Express, 6(9), 095602. DOI: 10.1088/2053-1591/ab2b12
  • Güler S H, Güler Ö, Evin E & Islak S (2016). Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik, 127(6), pp. 3187-3191. DOI: 10.1016/j.ijleo.2015.12.103
  • Heilmeier G H & Warfield G (1963). Photoconductivity in Metal‐Free Phthalocyanine Single Crystals. The Journal of Chemical Physics, 38(4), 897-901. DOI: 10.1063/1.1733780
  • Hussein M T, Aadim K A & Hassan E K (2016). Structural and surface morphology analysis of copper phthalocyanine thin film prepared by pulsed laser deposition and thermal evaporation techniques. Advances in Materials Physics and Chemistry, 6(4), 85-97. DOI: 10.4236/ampc.2016.64009
  • Kahraman S, Çetinkaya S, Yaşar S & Bilican İ (2014). Polyethylene glycol-assisted growth of Cu2SnS3 promising absorbers for thin film solar cell applications. Philosophical Magazine, 94(27), 3149-3161. DOI: 10.1080/14786435.2014.952257
  • Khan Z R, Zulfequar M & Khan M S (2010). Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (1 0 0) wafers. Materials Science and Engineering: B, 174, (1-3), 145-149. DOI: 10.1016/j.mseb.2010.03.006
  • Markova-Deneva I (2010). Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt, and nickel synthesized through borohydride reduction method. Journal of the University of Chemical Technology and Metallurgy, 45(4), 351-378.
  • Saleem M, Fang L, Ruan H B, Wu F, Huang Q L, Xu C L & Kong C Y (2012). Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. International Journal of Physical Sciences, 7(23), 2971-2979. DOI: 10.5897/IJPS12.219
  • Scherrer P (1918). Bestimmung dergrosse und der inneren struktur yon kolloiteilchen mittels. Gottinger Nachr Math Phys, 2, 98-100. (in Deutsch)
  • Singh S, Tripathi S K & Saini G S S (2008). Optical and infrared spectroscopic studies of chemical sensing by copper phthalocyanine thin films. Materials Chemistry and Physics, 112(3), 793-797. DOI: 10.1016/j.matchemphys.2008.06.044
  • Xavier F P (1997). Application of electroreflectance analysis for organic semiconductor thin films. Bulletin of Materials Science, 20(5), 651-665.
Year 2021, Volume: 5 Issue: 3, 105 - 110, 01.07.2021
https://doi.org/10.31127/tuje.695630

Abstract

Project Number

FF.16.33.

References

  • Güler Ö, Güler S H, Başgöz Ö, Albayrak M G & Yahia I S (2019). Synthesis and characterization of ZnO-reinforced with graphene nanolayer nanocomposites: electrical conductivity and optical band gap analysis. Materials Research Express, 6(9), 095602. DOI: 10.1088/2053-1591/ab2b12
  • Güler S H, Güler Ö, Evin E & Islak S (2016). Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik, 127(6), pp. 3187-3191. DOI: 10.1016/j.ijleo.2015.12.103
  • Heilmeier G H & Warfield G (1963). Photoconductivity in Metal‐Free Phthalocyanine Single Crystals. The Journal of Chemical Physics, 38(4), 897-901. DOI: 10.1063/1.1733780
  • Hussein M T, Aadim K A & Hassan E K (2016). Structural and surface morphology analysis of copper phthalocyanine thin film prepared by pulsed laser deposition and thermal evaporation techniques. Advances in Materials Physics and Chemistry, 6(4), 85-97. DOI: 10.4236/ampc.2016.64009
  • Kahraman S, Çetinkaya S, Yaşar S & Bilican İ (2014). Polyethylene glycol-assisted growth of Cu2SnS3 promising absorbers for thin film solar cell applications. Philosophical Magazine, 94(27), 3149-3161. DOI: 10.1080/14786435.2014.952257
  • Khan Z R, Zulfequar M & Khan M S (2010). Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (1 0 0) wafers. Materials Science and Engineering: B, 174, (1-3), 145-149. DOI: 10.1016/j.mseb.2010.03.006
  • Markova-Deneva I (2010). Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt, and nickel synthesized through borohydride reduction method. Journal of the University of Chemical Technology and Metallurgy, 45(4), 351-378.
  • Saleem M, Fang L, Ruan H B, Wu F, Huang Q L, Xu C L & Kong C Y (2012). Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. International Journal of Physical Sciences, 7(23), 2971-2979. DOI: 10.5897/IJPS12.219
  • Scherrer P (1918). Bestimmung dergrosse und der inneren struktur yon kolloiteilchen mittels. Gottinger Nachr Math Phys, 2, 98-100. (in Deutsch)
  • Singh S, Tripathi S K & Saini G S S (2008). Optical and infrared spectroscopic studies of chemical sensing by copper phthalocyanine thin films. Materials Chemistry and Physics, 112(3), 793-797. DOI: 10.1016/j.matchemphys.2008.06.044
  • Xavier F P (1997). Application of electroreflectance analysis for organic semiconductor thin films. Bulletin of Materials Science, 20(5), 651-665.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rekawt Hamad This is me 0000-0003-3804-022X

Canan Aksu Canbay 0000-0002-5151-4576

İskender Özkul 0000-0003-4255-0564

Project Number FF.16.33.
Publication Date July 1, 2021
Published in Issue Year 2021 Volume: 5 Issue: 3

Cite

APA Hamad, R., Aksu Canbay, C., & Özkul, İ. (2021). Microstructural analysis of ZnO-CuPc nanocomposites synthenised by hydrothermal method. Turkish Journal of Engineering, 5(3), 105-110. https://doi.org/10.31127/tuje.695630
AMA Hamad R, Aksu Canbay C, Özkul İ. Microstructural analysis of ZnO-CuPc nanocomposites synthenised by hydrothermal method. TUJE. July 2021;5(3):105-110. doi:10.31127/tuje.695630
Chicago Hamad, Rekawt, Canan Aksu Canbay, and İskender Özkul. “Microstructural Analysis of ZnO-CuPc Nanocomposites Synthenised by Hydrothermal Method”. Turkish Journal of Engineering 5, no. 3 (July 2021): 105-10. https://doi.org/10.31127/tuje.695630.
EndNote Hamad R, Aksu Canbay C, Özkul İ (July 1, 2021) Microstructural analysis of ZnO-CuPc nanocomposites synthenised by hydrothermal method. Turkish Journal of Engineering 5 3 105–110.
IEEE R. Hamad, C. Aksu Canbay, and İ. Özkul, “Microstructural analysis of ZnO-CuPc nanocomposites synthenised by hydrothermal method”, TUJE, vol. 5, no. 3, pp. 105–110, 2021, doi: 10.31127/tuje.695630.
ISNAD Hamad, Rekawt et al. “Microstructural Analysis of ZnO-CuPc Nanocomposites Synthenised by Hydrothermal Method”. Turkish Journal of Engineering 5/3 (July 2021), 105-110. https://doi.org/10.31127/tuje.695630.
JAMA Hamad R, Aksu Canbay C, Özkul İ. Microstructural analysis of ZnO-CuPc nanocomposites synthenised by hydrothermal method. TUJE. 2021;5:105–110.
MLA Hamad, Rekawt et al. “Microstructural Analysis of ZnO-CuPc Nanocomposites Synthenised by Hydrothermal Method”. Turkish Journal of Engineering, vol. 5, no. 3, 2021, pp. 105-10, doi:10.31127/tuje.695630.
Vancouver Hamad R, Aksu Canbay C, Özkul İ. Microstructural analysis of ZnO-CuPc nanocomposites synthenised by hydrothermal method. TUJE. 2021;5(3):105-10.
Flag Counter