Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 4, 154 - 164, 01.10.2021
https://doi.org/10.31127/tuje.686246

Abstract

References

  • ABAQUS (2011). Abaqus Theory Manual. ABAQUS version 6.11. Dassault Systèmes Simulia Corp, USA.
  • ACI Committee (2014). Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14). American Concrete Institute, Farmington Hills (MI), Detroit, USA.
  • Al-Kutti W A (2018). Parameters estimation of Drucker-Prager plasticity criteria for steel confined circular concrete columns in compression. MATEC Web of Conferences, 149, 01048. DOI: 10.1051/matecconf/201814901048
  • Bagherinejad K, Hosseinpour E & Hosseini S H (2015). Evaluation of rectangular concrete filled steel hollow section beam-columns. Journal of Asian Scientific Research, 5(1), 46–59. DOI: 10.18488/journal.2/2015.5.1/2.1.46.59
  • Deng Y, Norton T R & Tuan C Y (2013). Numerical analysis of concrete filled circular steel tubes. Structures and Buildings, 166(1), 3–14. DOI: 10.1680/stbu.11.00001
  • Giakoumelis G & Lam D (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049–1068. DOI: 10.1016/j.jcsr.2003.10.001
  • Gupta P K, Sarda S M & Kumar M S (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63(2), 182–193. DOI: 10.1016/j.jcsr.2006.04.004
  • Han L H (2002). Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research, 58(3), 353–372. DOI: 10.1016/S0143-974X(01)00059-1
  • Han L H, Yao G H & Tao Z (2007). Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures, 45(1), 24–36. DOI: 10.1016/j.tws.2007.01.008
  • Huang C S, Yeh Y K, Liu G Y, Hu H T, Tsai K C, Weng Y T, Wang S H & Wu M H (2002). Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering, 128(9), 1222–1230. DOI: 10.1061/(ASCE)0733-9445(2002)128:9(1222)
  • Liu D & Gho W M (2005). Axial load behavior of high-strength rectangular concrete-filled steel tubular stub columns. Thin-Walled Structures, 43(8), 1131–1142. DOI: 10.1016/j.tws.2005.03.007
  • Liu D (2005). Tests on high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 61(7), 902–911. DOI: 10.1016/j.jcsr.2005.01.001
  • Mallesh M, Asif M & Sreyas G G (2016). Nonlinear analysis of concrete filled stainless steel tubular column. International Research Journal of Engineering and Technology, 3(8), 1108–1111.
  • Nguyen D H, Hong W K, Ko H J & Kim S K (2019). Finite element model for the interface between steel and concrete of CFST (concrete-filled steel tube). Engineering Structures, 185, 141–158. DOI: 10.1016/j.engstruct.2019.01.068
  • Ouyang Y & Kwan A K H (2018). Finite element analysis of square concrete-filled steel tube (CFST) columns under axial compressive load. Engineering Structures, 156, 443–459. DOI: 10.1016/j.engstruct.2017.11.055
  • Sakino K, Nakahara H, Morino S & Nishiyama I (2004). Behavior of Centrally loaded concrete filled steel tube short columns. Journal of Structural Engineering, 130(2), 180–188. DOI: 10.1061/(ASCE)0733-9445(2004)130:2(180)
  • Schneider S P (1998). Axially loaded concrete filled steel tubes. Journal of Structural Engineering, 124(10), 1125–1138. DOI: 10.1061/(ASCE)0733-9445(1998)124:10(1125)
  • Tao Z, Han L H & Wang Z B (2005). Experimental behavior of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. Journal of Constructional Steel Research, 61(7), 962–983. DOI: 10.1016/j.jcsr.2004.12.003
  • Tao Z, Uy B, Liao F Y & Han L H (2011). Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression. Journal of Constructional Steel Research, 67(11), 1719–1732. DOI: 10.1016/j.jcsr.2011.04.012
  • Tao Z, Wang Z B & Yu Q (2013). Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, 89, 121–131. DOI: 10.1016/j.jcsr.2013.07.001
  • Uy B (2000). Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering, 126(3), 341–352. DOI: 10.1061/(ASCE)0733-9445(2000)126:3(341)
  • Yang Z, Zhang Y, Chen M & Chen G (2013). Numerical simulation of ultra-strength concrete filled steel columns. Engineering Review, 33(3), 211–217.
  • Yu Q, Tao Z & Wu Y X (2008). Experimental behavior of high performance concrete-filled steel tubular columns. Thin-Walled Structures, 46(4), 362–370. DOI: 10.1016/j.tws.2007.10.001
  • Zhao L, Cao W, Guo H, Zhao Y, Song Y & Yang Z (2018). Experimental and numerical analysis of large scale circular concrete-filled steel tubular columns with various constructural measures under high axial load ratios. Applied Sciences, 8(10), 1894. DOI: 10.3390/app8101894

Strength and behaviour assessment of axially loaded concrete filled steel tubular stub columns

Year 2021, Volume: 5 Issue: 4, 154 - 164, 01.10.2021
https://doi.org/10.31127/tuje.686246

Abstract

As a result of the excellent performance under different loading conditions, concrete-filled steel tubular (CFST) stub columns are extensively used recently. The current study employs a 3D finite element analysis to assess the response of (CFST) stub columns when subjected to axial compression. The effect of some parameters of concrete and the confining steel tube where numerically investigated. The steel was considered as an elastic perfectly plastic material, whereas a damage plasticity behaviour was adopted for the concrete material. Analysis results suggested that the ultimate strength of concrete increases with the increase of its grade. On the other hand, increasing magnitudes of concrete grade caused a reduction in the ductility of the composite columns. Also, the increase in the steel yields stress, and the steel tube wall thickness contributes to an increase in the columns’ ultimate strength. However, they reduce the action of the concrete grade that increases the column’s ultimate strength. It was also noted that the ductility that the circular CFST stub columns showed is larger than that for square columns. Thus, the use of square CFST columns with high strength concrete, especially in seismically active areas, should be carefully considered. 

References

  • ABAQUS (2011). Abaqus Theory Manual. ABAQUS version 6.11. Dassault Systèmes Simulia Corp, USA.
  • ACI Committee (2014). Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14). American Concrete Institute, Farmington Hills (MI), Detroit, USA.
  • Al-Kutti W A (2018). Parameters estimation of Drucker-Prager plasticity criteria for steel confined circular concrete columns in compression. MATEC Web of Conferences, 149, 01048. DOI: 10.1051/matecconf/201814901048
  • Bagherinejad K, Hosseinpour E & Hosseini S H (2015). Evaluation of rectangular concrete filled steel hollow section beam-columns. Journal of Asian Scientific Research, 5(1), 46–59. DOI: 10.18488/journal.2/2015.5.1/2.1.46.59
  • Deng Y, Norton T R & Tuan C Y (2013). Numerical analysis of concrete filled circular steel tubes. Structures and Buildings, 166(1), 3–14. DOI: 10.1680/stbu.11.00001
  • Giakoumelis G & Lam D (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049–1068. DOI: 10.1016/j.jcsr.2003.10.001
  • Gupta P K, Sarda S M & Kumar M S (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63(2), 182–193. DOI: 10.1016/j.jcsr.2006.04.004
  • Han L H (2002). Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research, 58(3), 353–372. DOI: 10.1016/S0143-974X(01)00059-1
  • Han L H, Yao G H & Tao Z (2007). Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures, 45(1), 24–36. DOI: 10.1016/j.tws.2007.01.008
  • Huang C S, Yeh Y K, Liu G Y, Hu H T, Tsai K C, Weng Y T, Wang S H & Wu M H (2002). Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering, 128(9), 1222–1230. DOI: 10.1061/(ASCE)0733-9445(2002)128:9(1222)
  • Liu D & Gho W M (2005). Axial load behavior of high-strength rectangular concrete-filled steel tubular stub columns. Thin-Walled Structures, 43(8), 1131–1142. DOI: 10.1016/j.tws.2005.03.007
  • Liu D (2005). Tests on high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 61(7), 902–911. DOI: 10.1016/j.jcsr.2005.01.001
  • Mallesh M, Asif M & Sreyas G G (2016). Nonlinear analysis of concrete filled stainless steel tubular column. International Research Journal of Engineering and Technology, 3(8), 1108–1111.
  • Nguyen D H, Hong W K, Ko H J & Kim S K (2019). Finite element model for the interface between steel and concrete of CFST (concrete-filled steel tube). Engineering Structures, 185, 141–158. DOI: 10.1016/j.engstruct.2019.01.068
  • Ouyang Y & Kwan A K H (2018). Finite element analysis of square concrete-filled steel tube (CFST) columns under axial compressive load. Engineering Structures, 156, 443–459. DOI: 10.1016/j.engstruct.2017.11.055
  • Sakino K, Nakahara H, Morino S & Nishiyama I (2004). Behavior of Centrally loaded concrete filled steel tube short columns. Journal of Structural Engineering, 130(2), 180–188. DOI: 10.1061/(ASCE)0733-9445(2004)130:2(180)
  • Schneider S P (1998). Axially loaded concrete filled steel tubes. Journal of Structural Engineering, 124(10), 1125–1138. DOI: 10.1061/(ASCE)0733-9445(1998)124:10(1125)
  • Tao Z, Han L H & Wang Z B (2005). Experimental behavior of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. Journal of Constructional Steel Research, 61(7), 962–983. DOI: 10.1016/j.jcsr.2004.12.003
  • Tao Z, Uy B, Liao F Y & Han L H (2011). Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression. Journal of Constructional Steel Research, 67(11), 1719–1732. DOI: 10.1016/j.jcsr.2011.04.012
  • Tao Z, Wang Z B & Yu Q (2013). Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, 89, 121–131. DOI: 10.1016/j.jcsr.2013.07.001
  • Uy B (2000). Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering, 126(3), 341–352. DOI: 10.1061/(ASCE)0733-9445(2000)126:3(341)
  • Yang Z, Zhang Y, Chen M & Chen G (2013). Numerical simulation of ultra-strength concrete filled steel columns. Engineering Review, 33(3), 211–217.
  • Yu Q, Tao Z & Wu Y X (2008). Experimental behavior of high performance concrete-filled steel tubular columns. Thin-Walled Structures, 46(4), 362–370. DOI: 10.1016/j.tws.2007.10.001
  • Zhao L, Cao W, Guo H, Zhao Y, Song Y & Yang Z (2018). Experimental and numerical analysis of large scale circular concrete-filled steel tubular columns with various constructural measures under high axial load ratios. Applied Sciences, 8(10), 1894. DOI: 10.3390/app8101894
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Samoel M. Saleh This is me 0000-0002-3046-168X

İhsan Al-abboodi 0000-0001-9256-5073

Publication Date October 1, 2021
Published in Issue Year 2021 Volume: 5 Issue: 4

Cite

APA Saleh, S. M., & Al-abboodi, İ. (2021). Strength and behaviour assessment of axially loaded concrete filled steel tubular stub columns. Turkish Journal of Engineering, 5(4), 154-164. https://doi.org/10.31127/tuje.686246
AMA Saleh SM, Al-abboodi İ. Strength and behaviour assessment of axially loaded concrete filled steel tubular stub columns. TUJE. October 2021;5(4):154-164. doi:10.31127/tuje.686246
Chicago Saleh, Samoel M., and İhsan Al-abboodi. “Strength and Behaviour Assessment of Axially Loaded Concrete Filled Steel Tubular Stub Columns”. Turkish Journal of Engineering 5, no. 4 (October 2021): 154-64. https://doi.org/10.31127/tuje.686246.
EndNote Saleh SM, Al-abboodi İ (October 1, 2021) Strength and behaviour assessment of axially loaded concrete filled steel tubular stub columns. Turkish Journal of Engineering 5 4 154–164.
IEEE S. M. Saleh and İ. Al-abboodi, “Strength and behaviour assessment of axially loaded concrete filled steel tubular stub columns”, TUJE, vol. 5, no. 4, pp. 154–164, 2021, doi: 10.31127/tuje.686246.
ISNAD Saleh, Samoel M. - Al-abboodi, İhsan. “Strength and Behaviour Assessment of Axially Loaded Concrete Filled Steel Tubular Stub Columns”. Turkish Journal of Engineering 5/4 (October 2021), 154-164. https://doi.org/10.31127/tuje.686246.
JAMA Saleh SM, Al-abboodi İ. Strength and behaviour assessment of axially loaded concrete filled steel tubular stub columns. TUJE. 2021;5:154–164.
MLA Saleh, Samoel M. and İhsan Al-abboodi. “Strength and Behaviour Assessment of Axially Loaded Concrete Filled Steel Tubular Stub Columns”. Turkish Journal of Engineering, vol. 5, no. 4, 2021, pp. 154-6, doi:10.31127/tuje.686246.
Vancouver Saleh SM, Al-abboodi İ. Strength and behaviour assessment of axially loaded concrete filled steel tubular stub columns. TUJE. 2021;5(4):154-6.
Flag Counter