Research Article
BibTex RIS Cite

Molecular dynamic simulation of uniaxial tension deformation applied to α-Fe nanowire

Year 2022, Volume: 6 Issue: 3, 190 - 198, 20.07.2022
https://doi.org/10.31127/tuje.888891

Abstract

In this study, using the Molecular Dynamics (MD) simulation method, the effects of the tensie stress applied to the Fe nano wire along the direction of [100] for different temperatures and strain rates were tried to be determined. The stress-strain curve, Young’ s modulus, yield stress and plastic deformation of the model system under tensile stress were investigated. The Embedded Atom Method (EAM), which includes many body interactions, was used to determine the interactions between atoms. It was determined that temperature and strain rate had an effect on the mechanical behaviour of α-Fe nanowire. It was found that the Young’ s modulus is independent of the strain rate at low temperatures, but decreases with increasing temperature. It was also determined that the flow strain decreased with increasing temperature and decreasing strain rate. The motion of dislocations and twinning corresponding to plastic deformation and the resulting reorientation of regional crystal structures were attempted to be determined by the method of Common Neighbour Analysis (CNA).

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Agrait N, Rodrigo J G, Sirvent C & Vieira S (1993). Atomic-scale connective neck formation and characterization. Phys. Rev. B, 48, 8499.
  • Agrait N, Rubio G & Vieira S (1995). Plastic Deformation of Nanometer-Scale Gold Connective Necks. Phys. Rev. Lett., 74, 3995.
  • Alavi A, Mirabbaszadeh K, Nayebi P et al. (2010). Molecular dynamics simulation of mechanical properties of Ni–Al nanowires. Computational Materials Science, 50, 10–14.
  • Arnold M S, Avouris P, Pan Z W & Wang Z L (2003). Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B, 107(3), 659-663
  • Bañuelos E U, Aburto C C & Arce A M (2016). A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics, 144, 094504.
  • Bonny G, Castin N & Terentyev D (2013). Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. Eng., 21, 085004.
  • Cai J & Ye Y Y (1996). Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B, 54, 8398.
  • Da Silva, E Z da Silva AJR & Fazzio A (2001). How Do Gold Nanowires Break? Phys. Rev. Lett., 87, 256102.
  • Da Silva E Z, Novaes F D & da Silva A J R (2004). Theoretical study of the formation, evolution, and breaking of gold nanowires. Phys. Rev. B, 69, 115411.
  • Davoodi J & Ahmadi M (2012). Molecular Dynamics simulation of elastic properties of CuPd nanowire. Composites: Part B, 43, 10-14.
  • Diao J, Gall K, Dunn ML (2004). Yield Strength Asymmetry in Metal Nanowires Nano Lett, 4, 1863–1867.
  • Diao J, Gall K, Dunn M L & Zimmerman J A (2006). Atomistic simulations of the yielding of gold nanowires. Acta Materialia, 54, 643-653.
  • Duan X & Huang Y (2003). Single-nanowire electrically driven lasers. Nature, 421, 241-245.
  • Engin C & Urbassek H M (2008). Molecular-dynamics investigation of the fcc-bcc phase transformation in Fe. Computational Materials Science, 41, 297-304.
  • Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X & Lib H (2020). Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth, 532, 125382.
  • Finnis M W & Sinclair J E (1984). A simple empirical N-body potential for transition metals. Philosophical Magazine, 50, 45-55.
  • Gan Y & Chen J K (2009). Molecular dynamics study of size, temperature and rate dependent thermomechanical properties of copper nanofilms. Mechanics Research Communications, 36, 838-844.
  • Gao Y, Sun Y, Yang X, Sun Q & Zhao J (2016). Investigation on the mechanical behaviour of faceted Ag nanowires. Molecular Simulation, 42(3), 220-228.
  • Godet J, Pizzagalli L & Guillotte M (2019). Molecular dynamics study of mechanical behavior of gold-silicon core-shell nanowires under cyclic loading. Acta Materialia, 5, 100204.
  • Horstemeyer M F, Baskes M I & Plimpton S J (2001). Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater, 49, 4363-4374.
  • Huang H M & Mao S (2001) Room-temperature ultraviolet nanowire nanolasers Science, 292, 5523.
  • Ikeda H, Qi Y, Cagin T, et al. (1999). Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900-2903.
  • Jacobus K, Sehitoglu H & Balzer M (1996). Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A, 27(A), 3066-3073.
  • Jing Y, Meng Q & Zhao W (2009). Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E, 41, 685-689.
  • Karimi M, Stapay G, Kaplan T & Mostoller M (1997). Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling Simul. Mater. Sci. Eng., 5, 337.
  • Kazanc S, Ozgen S & Adiguzel O (2003). Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334, 375-381.
  • Kazanc S & Ozgen S (2004). The Changes of barrier energy in fcc-bcc phase transformation by shear stresses. G.U. Journal of Science, 17(2), 35-42.
  • Kim C, Gu W, Briceno M, Robertson I M, Choi H & Kim K (2008). Copper Nanowires with a Five‐Twinned Structure Grown by Chemical Vapor Deposition. Adv Mater., 20, 1859-1863.
  • Koh S J A, Lee H P, Lu C & Cheng Q H (2005). Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B, 72, 085414.
  • Krüger D, Fuchs H, Rousseau R, Marx D & Parrinello M (2002). Pulling Monatomic Gold Wires with Single Molecules: An Ab Initio Simulation. Phys. Rev Lett., 89, 186402.
  • LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov/, (Access date:02.01.2021).
  • Landman U, Luedtke W D, Salisbury B E & Whetten R L (1996). Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions.Phys. Rev. Lett., 77, 1362.
  • Lee K, Wu Z, Chen Z, Ren F, Pearton S J & Rinzler A G (2004). Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes. Nano Lett., 4, 911-914.
  • Legoas S B, Galvao D S, Rodrigues V & Ugarte D (2002). Origin of Anomalously Long Interatomic Distances in Suspended Gold Chains. Phys. Rev. Lett., 88, 076105.
  • Li J, Hu L, Wang L, Zhou Y, Gruner G & Marks T J (2006). Organic light-emitting diodes having carbon nanotube anodes, Nano Lett., 6, 2472-2477.
  • Li S, Ding X, Deng J et al. (2010). Superelasticity in bcc nanowires by a reversible twinning mechanism. Phys. Rev. B, 82, 205435.
  • Li L & Han M (2017). Molecular dynamics simulations on tensile behaviors of single-crystal bcc Fe nanowire: effects of strain rates and thermal environment. Appl. Phys. A, 123, 450.
  • Liang W W & Zhou M (2003). Size and strain rate effects in tensile deformation of Cu nanowires. Nanotechnology, 2, 452-455.
  • Liang W, Zhou M & Ke F (2005). Shape Memory Effect in Cu Nanowires. Nano Lett., 5, 2039.
  • Malins A, Williams S R, Eggers J & Royall C P (2013). Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics, 139, 234506.
  • Marszalek P E, Greenleaf W J, Li H B, Oberhauser A F & Fernandez J M (2000). Atomic force microscopy captures quantized plastic deformation in gold nanowires. PNAS, 97, 6282-6286.
  • Mishin Y, Mehl M, Papaconstantopoulos D, Voter A & Kress J (2001). Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B, 63, 224106.
  • Olsson P, Wallenius J, Domain C, Nordlund K & Malerba L (2005). Two-band modeling of α-prime phase formation in Fe-Cr. Phys. Rev. B, 72, 214119.
  • Park HS, Zimmerman JA (2005). Modeling inelasticity and failure in gold nanowires Phys Rev B, 72, 054106.
  • Park H S & Ji C (2006). On the thermomechanical deformation of silver shape memory nanowires. Acta Mater., 54, 2645.
  • Parrinello M & Rahman A (1980). Crystal structure and pair potentials: a molecular-dynamics study. Physical Review Letters, 45(11), 1196.
  • Parrinello M & Rahman A (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 52(12), 7182-7190.
  • Pasquier A, Unalan H E, Kanwal A, Miller S & Chhowalla M (2005). Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett., 87, 203511.
  • Rawat S & Mitra N (2020). Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Computational Materials Science, 172, 109325.
  • Rodrigues V, Fuhrer T & Ugarte D (2000). Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett., 85, 4124.
  • Saha S, Motalab M & Mahboob M (2017). Investigation on mechanical properties of polycrystalline W nanowire. Comp. Mater. Sci., 136, 52-59.
  • Saitoh K I & Liu W K (2009). Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Computational Materials Science, 46, 531-544.
  • Sainath G & Choudhary B K (2016). Orientation dependent deformation behavior of bcc iron nanowires. Computational Materials Science, 111, 406–415.
  • Salehinia I & Bahr D F (2014). Crystal orientation effect on dislocation nucleation and multiplication in fcc single crystal under uniaxial loading. International Journal of Plasticity, 52, 133–146.
  • Schiotz J, Tolla F D D & Jacobsen K W (1998). Softening of nanocrystalline metals at very small grain sizes. Nature, 391, 561-563.
  • Stukowski A (2012). Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • Suresh S & Li J (2008). Deformation of the ultra-strong. Nature, 456, 716–717.
  • Sutton A P & Chen J (1990). Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61, 139-146.
  • Tschoppa M A & McDowella D L (2008). Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading. Journal of the Mechanics and Physics of Solids, 56, 1806–1830.
  • Wadley H N G Zhou X, Johnson R A & Neurock M (2001). Mechanism, models and methods of vapor deposition. Progress in Materials Science, 46, 329-377.
  • Wang J, Huang Q A & Yu H (2008). Size and temperature dependence of Young's modulus of a silicon nano-plate. J. Phys. D: Appl. Phys., 41, 165406.
  • Wang P, Chou W, Nie A, Huang Y, Yao H & Wang H (2011). Molecular dynamics simulation on deformation mechanisms in body-centered-cubic molybdenum nanowires Journal of Applied Physics, 110, 093521.
  • Wen Y H, Zhu Z Z & Zhu R Z (2008). Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Computational Materials Science, 41, 553-560.
  • Wen Y H, Zhang Y, Wang Q, Zheng J C & Zhu Z Z (2010). Orientation- dependent mechanical properties of Au nanowires under uniaxial loading. Computational Materials Science, 48, 513-519.
  • Wu Y H, Zhou Z M & Wang Y L (2004). Studies on effects of aluminum compounds on aluminum contents inserum and brain of mice with high performance capillary electrophoresis. Nature, 29(1), 61.
  • Wu H A (2006). Molecular Dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids, 25, 370-377.
  • Voter A F & Chen S P (1987). Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82, 175.
  • Zhanga L, Lua C, Tieua K, Sua L, Zhaoa X & Peib L (2017). Stacking fault tetrahedron induced plasticity in copper single crystal. Materials Science and Engineering A, 680, 27–38.
  • Zhang L, Lu C & Tieu A K (2018). Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters, 227, 236-239.
  • Zhu J & Shi D (2011). Reorientation mechanisms and pseudoelasticity in iron nanowires. J. Phys. D Appl. Phys., 44, 055404.
Year 2022, Volume: 6 Issue: 3, 190 - 198, 20.07.2022
https://doi.org/10.31127/tuje.888891

Abstract

Project Number

-

References

  • Agrait N, Rodrigo J G, Sirvent C & Vieira S (1993). Atomic-scale connective neck formation and characterization. Phys. Rev. B, 48, 8499.
  • Agrait N, Rubio G & Vieira S (1995). Plastic Deformation of Nanometer-Scale Gold Connective Necks. Phys. Rev. Lett., 74, 3995.
  • Alavi A, Mirabbaszadeh K, Nayebi P et al. (2010). Molecular dynamics simulation of mechanical properties of Ni–Al nanowires. Computational Materials Science, 50, 10–14.
  • Arnold M S, Avouris P, Pan Z W & Wang Z L (2003). Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B, 107(3), 659-663
  • Bañuelos E U, Aburto C C & Arce A M (2016). A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics, 144, 094504.
  • Bonny G, Castin N & Terentyev D (2013). Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. Eng., 21, 085004.
  • Cai J & Ye Y Y (1996). Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B, 54, 8398.
  • Da Silva, E Z da Silva AJR & Fazzio A (2001). How Do Gold Nanowires Break? Phys. Rev. Lett., 87, 256102.
  • Da Silva E Z, Novaes F D & da Silva A J R (2004). Theoretical study of the formation, evolution, and breaking of gold nanowires. Phys. Rev. B, 69, 115411.
  • Davoodi J & Ahmadi M (2012). Molecular Dynamics simulation of elastic properties of CuPd nanowire. Composites: Part B, 43, 10-14.
  • Diao J, Gall K, Dunn ML (2004). Yield Strength Asymmetry in Metal Nanowires Nano Lett, 4, 1863–1867.
  • Diao J, Gall K, Dunn M L & Zimmerman J A (2006). Atomistic simulations of the yielding of gold nanowires. Acta Materialia, 54, 643-653.
  • Duan X & Huang Y (2003). Single-nanowire electrically driven lasers. Nature, 421, 241-245.
  • Engin C & Urbassek H M (2008). Molecular-dynamics investigation of the fcc-bcc phase transformation in Fe. Computational Materials Science, 41, 297-304.
  • Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X & Lib H (2020). Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth, 532, 125382.
  • Finnis M W & Sinclair J E (1984). A simple empirical N-body potential for transition metals. Philosophical Magazine, 50, 45-55.
  • Gan Y & Chen J K (2009). Molecular dynamics study of size, temperature and rate dependent thermomechanical properties of copper nanofilms. Mechanics Research Communications, 36, 838-844.
  • Gao Y, Sun Y, Yang X, Sun Q & Zhao J (2016). Investigation on the mechanical behaviour of faceted Ag nanowires. Molecular Simulation, 42(3), 220-228.
  • Godet J, Pizzagalli L & Guillotte M (2019). Molecular dynamics study of mechanical behavior of gold-silicon core-shell nanowires under cyclic loading. Acta Materialia, 5, 100204.
  • Horstemeyer M F, Baskes M I & Plimpton S J (2001). Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater, 49, 4363-4374.
  • Huang H M & Mao S (2001) Room-temperature ultraviolet nanowire nanolasers Science, 292, 5523.
  • Ikeda H, Qi Y, Cagin T, et al. (1999). Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900-2903.
  • Jacobus K, Sehitoglu H & Balzer M (1996). Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A, 27(A), 3066-3073.
  • Jing Y, Meng Q & Zhao W (2009). Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E, 41, 685-689.
  • Karimi M, Stapay G, Kaplan T & Mostoller M (1997). Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling Simul. Mater. Sci. Eng., 5, 337.
  • Kazanc S, Ozgen S & Adiguzel O (2003). Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334, 375-381.
  • Kazanc S & Ozgen S (2004). The Changes of barrier energy in fcc-bcc phase transformation by shear stresses. G.U. Journal of Science, 17(2), 35-42.
  • Kim C, Gu W, Briceno M, Robertson I M, Choi H & Kim K (2008). Copper Nanowires with a Five‐Twinned Structure Grown by Chemical Vapor Deposition. Adv Mater., 20, 1859-1863.
  • Koh S J A, Lee H P, Lu C & Cheng Q H (2005). Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B, 72, 085414.
  • Krüger D, Fuchs H, Rousseau R, Marx D & Parrinello M (2002). Pulling Monatomic Gold Wires with Single Molecules: An Ab Initio Simulation. Phys. Rev Lett., 89, 186402.
  • LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov/, (Access date:02.01.2021).
  • Landman U, Luedtke W D, Salisbury B E & Whetten R L (1996). Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions.Phys. Rev. Lett., 77, 1362.
  • Lee K, Wu Z, Chen Z, Ren F, Pearton S J & Rinzler A G (2004). Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes. Nano Lett., 4, 911-914.
  • Legoas S B, Galvao D S, Rodrigues V & Ugarte D (2002). Origin of Anomalously Long Interatomic Distances in Suspended Gold Chains. Phys. Rev. Lett., 88, 076105.
  • Li J, Hu L, Wang L, Zhou Y, Gruner G & Marks T J (2006). Organic light-emitting diodes having carbon nanotube anodes, Nano Lett., 6, 2472-2477.
  • Li S, Ding X, Deng J et al. (2010). Superelasticity in bcc nanowires by a reversible twinning mechanism. Phys. Rev. B, 82, 205435.
  • Li L & Han M (2017). Molecular dynamics simulations on tensile behaviors of single-crystal bcc Fe nanowire: effects of strain rates and thermal environment. Appl. Phys. A, 123, 450.
  • Liang W W & Zhou M (2003). Size and strain rate effects in tensile deformation of Cu nanowires. Nanotechnology, 2, 452-455.
  • Liang W, Zhou M & Ke F (2005). Shape Memory Effect in Cu Nanowires. Nano Lett., 5, 2039.
  • Malins A, Williams S R, Eggers J & Royall C P (2013). Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics, 139, 234506.
  • Marszalek P E, Greenleaf W J, Li H B, Oberhauser A F & Fernandez J M (2000). Atomic force microscopy captures quantized plastic deformation in gold nanowires. PNAS, 97, 6282-6286.
  • Mishin Y, Mehl M, Papaconstantopoulos D, Voter A & Kress J (2001). Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B, 63, 224106.
  • Olsson P, Wallenius J, Domain C, Nordlund K & Malerba L (2005). Two-band modeling of α-prime phase formation in Fe-Cr. Phys. Rev. B, 72, 214119.
  • Park HS, Zimmerman JA (2005). Modeling inelasticity and failure in gold nanowires Phys Rev B, 72, 054106.
  • Park H S & Ji C (2006). On the thermomechanical deformation of silver shape memory nanowires. Acta Mater., 54, 2645.
  • Parrinello M & Rahman A (1980). Crystal structure and pair potentials: a molecular-dynamics study. Physical Review Letters, 45(11), 1196.
  • Parrinello M & Rahman A (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 52(12), 7182-7190.
  • Pasquier A, Unalan H E, Kanwal A, Miller S & Chhowalla M (2005). Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett., 87, 203511.
  • Rawat S & Mitra N (2020). Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Computational Materials Science, 172, 109325.
  • Rodrigues V, Fuhrer T & Ugarte D (2000). Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett., 85, 4124.
  • Saha S, Motalab M & Mahboob M (2017). Investigation on mechanical properties of polycrystalline W nanowire. Comp. Mater. Sci., 136, 52-59.
  • Saitoh K I & Liu W K (2009). Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Computational Materials Science, 46, 531-544.
  • Sainath G & Choudhary B K (2016). Orientation dependent deformation behavior of bcc iron nanowires. Computational Materials Science, 111, 406–415.
  • Salehinia I & Bahr D F (2014). Crystal orientation effect on dislocation nucleation and multiplication in fcc single crystal under uniaxial loading. International Journal of Plasticity, 52, 133–146.
  • Schiotz J, Tolla F D D & Jacobsen K W (1998). Softening of nanocrystalline metals at very small grain sizes. Nature, 391, 561-563.
  • Stukowski A (2012). Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • Suresh S & Li J (2008). Deformation of the ultra-strong. Nature, 456, 716–717.
  • Sutton A P & Chen J (1990). Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61, 139-146.
  • Tschoppa M A & McDowella D L (2008). Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading. Journal of the Mechanics and Physics of Solids, 56, 1806–1830.
  • Wadley H N G Zhou X, Johnson R A & Neurock M (2001). Mechanism, models and methods of vapor deposition. Progress in Materials Science, 46, 329-377.
  • Wang J, Huang Q A & Yu H (2008). Size and temperature dependence of Young's modulus of a silicon nano-plate. J. Phys. D: Appl. Phys., 41, 165406.
  • Wang P, Chou W, Nie A, Huang Y, Yao H & Wang H (2011). Molecular dynamics simulation on deformation mechanisms in body-centered-cubic molybdenum nanowires Journal of Applied Physics, 110, 093521.
  • Wen Y H, Zhu Z Z & Zhu R Z (2008). Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Computational Materials Science, 41, 553-560.
  • Wen Y H, Zhang Y, Wang Q, Zheng J C & Zhu Z Z (2010). Orientation- dependent mechanical properties of Au nanowires under uniaxial loading. Computational Materials Science, 48, 513-519.
  • Wu Y H, Zhou Z M & Wang Y L (2004). Studies on effects of aluminum compounds on aluminum contents inserum and brain of mice with high performance capillary electrophoresis. Nature, 29(1), 61.
  • Wu H A (2006). Molecular Dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids, 25, 370-377.
  • Voter A F & Chen S P (1987). Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82, 175.
  • Zhanga L, Lua C, Tieua K, Sua L, Zhaoa X & Peib L (2017). Stacking fault tetrahedron induced plasticity in copper single crystal. Materials Science and Engineering A, 680, 27–38.
  • Zhang L, Lu C & Tieu A K (2018). Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters, 227, 236-239.
  • Zhu J & Shi D (2011). Reorientation mechanisms and pseudoelasticity in iron nanowires. J. Phys. D Appl. Phys., 44, 055404.
There are 70 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sefa Kazanç 0000-0002-8896-8571

Canan Aksu Canbay 0000-0002-5151-4576

Project Number -
Publication Date July 20, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Kazanç, S., & Aksu Canbay, C. (2022). Molecular dynamic simulation of uniaxial tension deformation applied to α-Fe nanowire. Turkish Journal of Engineering, 6(3), 190-198. https://doi.org/10.31127/tuje.888891
AMA Kazanç S, Aksu Canbay C. Molecular dynamic simulation of uniaxial tension deformation applied to α-Fe nanowire. TUJE. July 2022;6(3):190-198. doi:10.31127/tuje.888891
Chicago Kazanç, Sefa, and Canan Aksu Canbay. “Molecular Dynamic Simulation of Uniaxial Tension Deformation Applied to α-Fe Nanowire”. Turkish Journal of Engineering 6, no. 3 (July 2022): 190-98. https://doi.org/10.31127/tuje.888891.
EndNote Kazanç S, Aksu Canbay C (July 1, 2022) Molecular dynamic simulation of uniaxial tension deformation applied to α-Fe nanowire. Turkish Journal of Engineering 6 3 190–198.
IEEE S. Kazanç and C. Aksu Canbay, “Molecular dynamic simulation of uniaxial tension deformation applied to α-Fe nanowire”, TUJE, vol. 6, no. 3, pp. 190–198, 2022, doi: 10.31127/tuje.888891.
ISNAD Kazanç, Sefa - Aksu Canbay, Canan. “Molecular Dynamic Simulation of Uniaxial Tension Deformation Applied to α-Fe Nanowire”. Turkish Journal of Engineering 6/3 (July 2022), 190-198. https://doi.org/10.31127/tuje.888891.
JAMA Kazanç S, Aksu Canbay C. Molecular dynamic simulation of uniaxial tension deformation applied to α-Fe nanowire. TUJE. 2022;6:190–198.
MLA Kazanç, Sefa and Canan Aksu Canbay. “Molecular Dynamic Simulation of Uniaxial Tension Deformation Applied to α-Fe Nanowire”. Turkish Journal of Engineering, vol. 6, no. 3, 2022, pp. 190-8, doi:10.31127/tuje.888891.
Vancouver Kazanç S, Aksu Canbay C. Molecular dynamic simulation of uniaxial tension deformation applied to α-Fe nanowire. TUJE. 2022;6(3):190-8.
Flag Counter