Research Article
BibTex RIS Cite

Slow-light effect in symmetry-reduced non-defect photonic crystals

Year 2022, Volume: 6 Issue: 4, 276 - 281, 15.10.2022
https://doi.org/10.31127/tuje.985059

Abstract

In this study, a two-dimensional low-symmetric photonic crystal (PC) configuration with elliptical geometry is presented and its slow-light (SL) effect is investigated. Reducing the symmetry in the PC unit cell provides slow modes at the higher transverse electric bands. The calculated group index and the corresponding normalized bandwidth equal to {ng, BW}={63.56, 0.0065}. That corresponds to a value of figure of merit (FOM)=0.4344 defined by the product of the average group index and the normalized bandwidth, FOM=〈ng〉BW, which is comparable to the values available in literature. Tracing the whole edges of the Brillouin zone, strongly excited SL modes are observed only along Γ-X but not along Γ-X’ or Γ-M. That condition allows for the design of low-symmetric PC waveguides with finite thicknesses at the expense of lowering group index value. The SL effect is still obtained for the proposed low-symmetric PCs having finite thicknesses, which is numerically proved via finite-difference time-domain methods. It is important to note that non-dispersive SL Bloch modes exist through the non-zero k-vector components of Brillouin zone. Hence, such a defect-free (without either point- or line- defect) SL PC design may have a great potential for the use of compact photonic devices such as in optical switching and biochemical sensing applications.

Thanks

Prof. Dr. Hamza Kurt

References

  • Bagci F & Akaoglu B (2015). Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants. Optical and Quantum Electronics, 47(3), 791-806.
  • Elshahat S, Khan K, Yadav A, Bibbò L & Ouyang Z (2018). Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide. Optics Communications, 418, 73-79.
  • Engelen R J P, Sugimoto Y, Watanabe Y, Korterik J P, Ikeda N, Van Hulst N F, ... & Kuipers L (2006). The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Optics express, 14(4), 1658-1672.
  • Ferrier L, Rojo-Romeo P, Drouard E, Letartre X, & Viktorovitch P (2008). Slow Bloch mode confinement in 2D photonic crystals for surface operating devices. Optics express, 16(5), 3136-3145.
  • Giden I H & Kurt H (2012). Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering. Applied optics, 51(9), 1287-1296.
  • Giden I H, Turduev M & Kurt H (2014). Reduced symmetry and analogy to chirality in periodic dielectric media. Journal of the European Optical Society-Rapid publications, 9.
  • Giden I H, Rezaei B & Kurt H (2015). Method of implementing graded index media by symmetry-reduced helical photonic structures. JOSA B, 32(10), 2153-2157.
  • Gumus M, Giden I H & Kurt H (2018). Broadband self-collimation in C2 symmetric photonic crystals. Optics letters, 43(11), 2555-2558.
  • Han X, Wang T, Tang J, Liu B, Wang B, He Y, & Zhu Y (2015). Slow light with large group index–bandwidth product in ellipse-hole photonic crystal waveguides. Applied optics, 54(6), 1543-1547.
  • Hocini A, Maache M & Khedrouche D (2018). Wideband and low dispersion slow light by altering the geometry of a photonic crystal waveguide. Optics Communications, 427, 396-404.
  • Hung Y J, Lee S L, Pan Y T, Thibeault B J, & Coldren, L A (2010). Holographic realization of hexagonal two dimensional photonic crystal structures with elliptical geometry. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(5), 1030-1038.
  • Joannopoulos J D, Johnson S G, Winn J N, & Meade R D (2008). Molding the flow of light. Princeton Univ. Press, Princeton, NJ. ISBN-10: 0691124566.
  • Johnson S G, & Joannopoulos J D (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics express, 8(3), 173-190.
  • Kassa-Baghdouche L & Cassan E (2018). High efficiency slotted photonic crystal waveguides for the determination of gases using mid-infrared spectroscopy. Instrumentation Science & Technology, 46(5), 534-54.
  • Kassa-Baghdouche L & Cassan E (2019). Sensitivity analysis of ring-shaped slotted photonic crystal waveguides for mid-infrared refractive index sensing. Optical and Quantum Electronics, 51(10), 1-11.
  • Khodamohammadi A, Khoshsima H, Fallahi V & Sahrai M (2015). Wideband slab photonic crystal waveguides for slow light using differential optofluidic infiltration. Applied optics, 54(5), 1002-1009.
  • Khurgin J B (2005). Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. JOSA B, 22(5), 1062-1074.
  • Khurgin J B & Tucker R S (Eds.). (2018). Slow light: Science and applications. CRC press.
  • Krauss T F (2007). Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics, 40(9), 2666.
  • Kurt H, Giden, I H & Ustun, K (2011). Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends. JOSA B, 28(3), 495-501.
  • Ma Y, Wu R & Li L (2021). Research on slow light transmission with wide bandwidth and large normalized delay bandwidth product. Optoelectronics Letters, 17(7), 407-411.
  • Mirjalili S M & Mirjalili S (2014). Oval-shaped-hole photonic crystal waveguide design by MoMIR framework. IEEE Photonics Technology Letters, 26(24), 2446-2449.
  • Mirjalili S M (2014). SoMIR framework for designing high-NDBP photonic crystal waveguides. Applied optics, 53(18), 3945-3953.
  • Moghaddam M K & Fleury R (2019). Slow light engineering in resonant photonic crystal line-defect waveguides. Optics express, 27(18), 26229-26238.
  • Mori D & Baba T (2005). Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide. Optics express, 13(23), 9398-9408.
  • Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D & Johnson S G (2010). MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181(3), 687-702.
  • Quiñónez F, Menezes J W, Cescato L, Rodriguez-Esquerre V F, Hernandez-Figueroa H & Mansano R D (2006). Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography. Optics Express, 14(11), 4873-4879.
  • Schulz S A, Upham J, O’Faolain L & Boyd R W (2017). Photonic crystal slow light waveguides in a kagome lattice. Optics letters, 42(16), 3243-3246.
  • Suh W, Wang Z & Fan S (2004). Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE Journal of Quantum Electronics, 40(10), 1511-1518.
  • Üstün K & Kurt H (2010). Ultra-slow light achievement in photonic crystals by merging coupled cavities with waveguides. Optics express, 18(20), 21155-21161.
  • Üstün K & Kurt H (2012). Slow light structure with enhanced delay–bandwidth product. JOSA B, 29(9), 2403-2409.
  • Trifonov T, Marsal L F, Rodriguez A, Pallares J & Alcubilla R (2004). Effects of symmetry reduction in two-dimensional square and triangular lattices. Physical Review B, 69(23), 235112.
  • Varmazyari V, Habibiyan H & Ghafoorifard H (2014). Slow light in ellipse-hole photonic crystal line-defect waveguide with high normalized delay bandwidth product. JOSA B, 31(4), 771-779.
  • Wu H, Citrin D S, Jiang L Y & Li X Y (2013). Polarization-independent slow light in annular photonic crystals. Applied Physics Letters, 102(14), 141112.
  • Zhao Y, Zhang Y N & Wang Q (2014). Slow-light optimization of polymer-infiltrated slot photonic crystal waveguide. IEEE Transactions on Nanotechnology, 13(4), 687-694.
  • Zhao Y, Zhang Y N, Wang Q & Hu H (2015). Review on the optimization methods of slow light in photonic crystal waveguide. IEEE transactions on nanotechnology, 14(3), 407-426.
Year 2022, Volume: 6 Issue: 4, 276 - 281, 15.10.2022
https://doi.org/10.31127/tuje.985059

Abstract

References

  • Bagci F & Akaoglu B (2015). Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants. Optical and Quantum Electronics, 47(3), 791-806.
  • Elshahat S, Khan K, Yadav A, Bibbò L & Ouyang Z (2018). Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide. Optics Communications, 418, 73-79.
  • Engelen R J P, Sugimoto Y, Watanabe Y, Korterik J P, Ikeda N, Van Hulst N F, ... & Kuipers L (2006). The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Optics express, 14(4), 1658-1672.
  • Ferrier L, Rojo-Romeo P, Drouard E, Letartre X, & Viktorovitch P (2008). Slow Bloch mode confinement in 2D photonic crystals for surface operating devices. Optics express, 16(5), 3136-3145.
  • Giden I H & Kurt H (2012). Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering. Applied optics, 51(9), 1287-1296.
  • Giden I H, Turduev M & Kurt H (2014). Reduced symmetry and analogy to chirality in periodic dielectric media. Journal of the European Optical Society-Rapid publications, 9.
  • Giden I H, Rezaei B & Kurt H (2015). Method of implementing graded index media by symmetry-reduced helical photonic structures. JOSA B, 32(10), 2153-2157.
  • Gumus M, Giden I H & Kurt H (2018). Broadband self-collimation in C2 symmetric photonic crystals. Optics letters, 43(11), 2555-2558.
  • Han X, Wang T, Tang J, Liu B, Wang B, He Y, & Zhu Y (2015). Slow light with large group index–bandwidth product in ellipse-hole photonic crystal waveguides. Applied optics, 54(6), 1543-1547.
  • Hocini A, Maache M & Khedrouche D (2018). Wideband and low dispersion slow light by altering the geometry of a photonic crystal waveguide. Optics Communications, 427, 396-404.
  • Hung Y J, Lee S L, Pan Y T, Thibeault B J, & Coldren, L A (2010). Holographic realization of hexagonal two dimensional photonic crystal structures with elliptical geometry. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(5), 1030-1038.
  • Joannopoulos J D, Johnson S G, Winn J N, & Meade R D (2008). Molding the flow of light. Princeton Univ. Press, Princeton, NJ. ISBN-10: 0691124566.
  • Johnson S G, & Joannopoulos J D (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics express, 8(3), 173-190.
  • Kassa-Baghdouche L & Cassan E (2018). High efficiency slotted photonic crystal waveguides for the determination of gases using mid-infrared spectroscopy. Instrumentation Science & Technology, 46(5), 534-54.
  • Kassa-Baghdouche L & Cassan E (2019). Sensitivity analysis of ring-shaped slotted photonic crystal waveguides for mid-infrared refractive index sensing. Optical and Quantum Electronics, 51(10), 1-11.
  • Khodamohammadi A, Khoshsima H, Fallahi V & Sahrai M (2015). Wideband slab photonic crystal waveguides for slow light using differential optofluidic infiltration. Applied optics, 54(5), 1002-1009.
  • Khurgin J B (2005). Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. JOSA B, 22(5), 1062-1074.
  • Khurgin J B & Tucker R S (Eds.). (2018). Slow light: Science and applications. CRC press.
  • Krauss T F (2007). Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics, 40(9), 2666.
  • Kurt H, Giden, I H & Ustun, K (2011). Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends. JOSA B, 28(3), 495-501.
  • Ma Y, Wu R & Li L (2021). Research on slow light transmission with wide bandwidth and large normalized delay bandwidth product. Optoelectronics Letters, 17(7), 407-411.
  • Mirjalili S M & Mirjalili S (2014). Oval-shaped-hole photonic crystal waveguide design by MoMIR framework. IEEE Photonics Technology Letters, 26(24), 2446-2449.
  • Mirjalili S M (2014). SoMIR framework for designing high-NDBP photonic crystal waveguides. Applied optics, 53(18), 3945-3953.
  • Moghaddam M K & Fleury R (2019). Slow light engineering in resonant photonic crystal line-defect waveguides. Optics express, 27(18), 26229-26238.
  • Mori D & Baba T (2005). Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide. Optics express, 13(23), 9398-9408.
  • Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D & Johnson S G (2010). MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181(3), 687-702.
  • Quiñónez F, Menezes J W, Cescato L, Rodriguez-Esquerre V F, Hernandez-Figueroa H & Mansano R D (2006). Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography. Optics Express, 14(11), 4873-4879.
  • Schulz S A, Upham J, O’Faolain L & Boyd R W (2017). Photonic crystal slow light waveguides in a kagome lattice. Optics letters, 42(16), 3243-3246.
  • Suh W, Wang Z & Fan S (2004). Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE Journal of Quantum Electronics, 40(10), 1511-1518.
  • Üstün K & Kurt H (2010). Ultra-slow light achievement in photonic crystals by merging coupled cavities with waveguides. Optics express, 18(20), 21155-21161.
  • Üstün K & Kurt H (2012). Slow light structure with enhanced delay–bandwidth product. JOSA B, 29(9), 2403-2409.
  • Trifonov T, Marsal L F, Rodriguez A, Pallares J & Alcubilla R (2004). Effects of symmetry reduction in two-dimensional square and triangular lattices. Physical Review B, 69(23), 235112.
  • Varmazyari V, Habibiyan H & Ghafoorifard H (2014). Slow light in ellipse-hole photonic crystal line-defect waveguide with high normalized delay bandwidth product. JOSA B, 31(4), 771-779.
  • Wu H, Citrin D S, Jiang L Y & Li X Y (2013). Polarization-independent slow light in annular photonic crystals. Applied Physics Letters, 102(14), 141112.
  • Zhao Y, Zhang Y N & Wang Q (2014). Slow-light optimization of polymer-infiltrated slot photonic crystal waveguide. IEEE Transactions on Nanotechnology, 13(4), 687-694.
  • Zhao Y, Zhang Y N, Wang Q & Hu H (2015). Review on the optimization methods of slow light in photonic crystal waveguide. IEEE transactions on nanotechnology, 14(3), 407-426.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İbrahim Halil Giden 0000-0002-3498-3151

Publication Date October 15, 2022
Published in Issue Year 2022 Volume: 6 Issue: 4

Cite

APA Giden, İ. H. (2022). Slow-light effect in symmetry-reduced non-defect photonic crystals. Turkish Journal of Engineering, 6(4), 276-281. https://doi.org/10.31127/tuje.985059
AMA Giden İH. Slow-light effect in symmetry-reduced non-defect photonic crystals. TUJE. October 2022;6(4):276-281. doi:10.31127/tuje.985059
Chicago Giden, İbrahim Halil. “Slow-Light Effect in Symmetry-Reduced Non-Defect Photonic Crystals”. Turkish Journal of Engineering 6, no. 4 (October 2022): 276-81. https://doi.org/10.31127/tuje.985059.
EndNote Giden İH (October 1, 2022) Slow-light effect in symmetry-reduced non-defect photonic crystals. Turkish Journal of Engineering 6 4 276–281.
IEEE İ. H. Giden, “Slow-light effect in symmetry-reduced non-defect photonic crystals”, TUJE, vol. 6, no. 4, pp. 276–281, 2022, doi: 10.31127/tuje.985059.
ISNAD Giden, İbrahim Halil. “Slow-Light Effect in Symmetry-Reduced Non-Defect Photonic Crystals”. Turkish Journal of Engineering 6/4 (October 2022), 276-281. https://doi.org/10.31127/tuje.985059.
JAMA Giden İH. Slow-light effect in symmetry-reduced non-defect photonic crystals. TUJE. 2022;6:276–281.
MLA Giden, İbrahim Halil. “Slow-Light Effect in Symmetry-Reduced Non-Defect Photonic Crystals”. Turkish Journal of Engineering, vol. 6, no. 4, 2022, pp. 276-81, doi:10.31127/tuje.985059.
Vancouver Giden İH. Slow-light effect in symmetry-reduced non-defect photonic crystals. TUJE. 2022;6(4):276-81.
Flag Counter