Research Article
BibTex RIS Cite

Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings

Year 2023, Volume: 7 Issue: 1, 42 - 48, 15.01.2023
https://doi.org/10.31127/tuje.1016153

Abstract

It is very important to reduce power losses for plain bearings used in industry and especially in automobiles. In recent years, inorganic compounds have been added to the engine oils to reduce friction in plain bearings and increase their performance. In this study, the effects of additive oil obtained by adding 1% by weight Molybdenum Disulfide (MoS2) to the base hydraulic (or lubricating) oil (Shell Tellus 10) on the statically loaded radial journal bearing performance were experimentally investigated. As a result of experiments, it was determined that MoS2 added engine oil showed less friction behavior by forming a better oil film compared to the base oil at increasing bearing load and temperatures, and therefore exhibited less wear and power loss.

References

  • Esmaeili, M., Oskouei, A. R., Mirhadizadeh, S. A., TSE, W. T., & Hoshyar, N. (2016). Prediction of Hydrodynamic bearing performance based on effective parameters by Neural Network. International Journal of Engineering and Management Sciences, 7(2), 92-99.
  • Cortes, V., Sanchez, K., Gonzalez, R., Alcoutlabi, M., & Ortega, J. A. (2020). The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants, 8(1), 10. https://doi.org/10.3390/lubricants8010010
  • Rudnick, L. R. (Ed.) (2017). Lubricant Additives: Chemistry and Applications, 3rd ed.; Chemical Industries; CRC Press Taylor & Francis Group: Boca Raton, FL, USA.
  • Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., & Kim, S. H. (2009). Understanding the role of nanoparticles in nano-oil lubrication. Tribology Letters, 35(2), 127-131.
  • Cortes, V., Sanchez, K., Gonzalez, R., Alcoutlabi, M., & Ortega, J. A. (2020). The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants, 8(1), 10. https://doi.org/10.3390/lubricants8010010
  • Mousavi, S. B., Heris, S. Z., & Estellé, P. (2020). Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Scientific Reports, 10(1), 1-17. https://doi.org/10.1038/s41598-020-62830-1
  • Beheshti, A., Huang, Y., Ohno, K., Blakey, I., & Stokes, J. R. (2020). Improving tribological properties of oil-based lubricants using hybrid colloidal additives. Tribology International, 144, 106130.
  • Wu, H., Zhao, J., Xia, W., Cheng, X., He, A., Yun, J. H., ... & Jiang, Z. (2017). A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International, 109, 398-408.
  • Elianov, O., Garusi, S., Rosentsveig, R., Cohen, S. R., Feldman, Y., Pinkas, I., ... & Shay, B. (2018). Deposition of metal coatings containing fullerene-like MoS2 nanoparticles with reduced friction and wear. Surface and Coatings Technology, 353, 116-125.
  • Hu, E. Z., Xu, Y., Hu, K. H., & Hu, X. G. (2017). Tribological properties of 3 types of MoS2 additives in different base greases. Lubrication Science, 29(8), 541-555.
  • Osim, W., Stojanovic, A., Akbarzadeh, J., Peterlik, H., & Binder, W. H. (2013). Surface modification of MoS 2 nanoparticles with ionic liquid–ligands: towards highly dispersed nanoparticles. Chemical Communications, 49(81), 9311-9313.
  • Tannous, J., Dassenoy, F., Lahouij, I., Le Mogne, T., Vacher, B., Bruhács, A., & Tremel, W. (2011). Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication. Tribology Letters, 41(1), 55-64.
  • Rajendhran, N., Palanisamy, S., Periyasamy, P., & Venkatachalam, R. (2018). Enhancing of the tribological characteristics of the lubricant oils using Ni-promoted MoS2 nanosheets as nano-additives. Tribology international, 118, 314-328.
  • Ripoll, M. R., Tomala, A., Gabler, C., Dražić, G., Pirker, L., & Remškar, M. (2018). In situ tribochemical sulfurization of molybdenum oxide nanotubes. Nanoscale, 10(7), 3281-3290.
  • Lahouij, I., Vacher, B., Martin, J. M., & Dassenoy, F. (2012). IF-MoS2 based lubricants: influence of size, shape and crystal structure. Wear, 296(1-2), 558-567.
  • Song, H., Wang, B., Zhou, Q., Xiao, J., & Jia, X. (2017). Preparation and tribological properties of MoS2/graphene oxide composites. Applied Surface Science, 419, 24-34.
  • Liu, L., Huang, Z., & Huang, P. (2016). Fabrication of coral-like MoS2 and its application in improving the tribological performance of liquid paraffin. Tribology International, 104, 303-308.
  • Charoo, M. S., Wani, M. F., Hanief, M., & Rather, M. A. (2017). Tribological properties of MoS2 particles as lubricant additive on EN31 alloy steel and AISI 52100 steel ball. Materials Today: Proceedings, 4(9), 9967-9971.
  • Baş, H. (2021). Investigation of effects of boron additives on performance of cam mechanisms. International Journal of Automotive Engineering and Technologies, 10(1), 60-66.
  • McKee, S. A., & McKee, T. R. (1932). Journal-bearing friction in the region of thin-film lubrication. SAE Transactions, 371-377.
  • Mushtaq, Z., & Hanief, M. (2021). Evaluation of Tribological Performance of Jatropha Oil Modified With Molybdenum Disulphide Micro-Particles for Steel–Steel Contacts. Journal of Tribology, 143(2). https://doi.org/10.1115/1.4047752
  • Xu, Z. Y., Hu, K. H., Han, C. L., Hu, X. G., & Xu, Y. F. (2013). Morphological influence of molybdenum disulfide on the tribological properties of rapeseed oil. Tribology Letters, 49(3), 513-524. https://doi.org/10.1007/s11249-012-0092-8
  • Srinivas, V., Thakur, R. N., & Jain, A. K. (2017). Antiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticles. Tribology Transactions, 60(1), 12-19. https://doi.org/10.1080/10402004.2016.1142034
  • Çuvalcı, H., & Baş, H. (2004). Investigation of the tribological properties of silicon containing zinc–aluminum based journal bearings. Tribology international, 37(6), 433-440.
Year 2023, Volume: 7 Issue: 1, 42 - 48, 15.01.2023
https://doi.org/10.31127/tuje.1016153

Abstract

References

  • Esmaeili, M., Oskouei, A. R., Mirhadizadeh, S. A., TSE, W. T., & Hoshyar, N. (2016). Prediction of Hydrodynamic bearing performance based on effective parameters by Neural Network. International Journal of Engineering and Management Sciences, 7(2), 92-99.
  • Cortes, V., Sanchez, K., Gonzalez, R., Alcoutlabi, M., & Ortega, J. A. (2020). The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants, 8(1), 10. https://doi.org/10.3390/lubricants8010010
  • Rudnick, L. R. (Ed.) (2017). Lubricant Additives: Chemistry and Applications, 3rd ed.; Chemical Industries; CRC Press Taylor & Francis Group: Boca Raton, FL, USA.
  • Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., & Kim, S. H. (2009). Understanding the role of nanoparticles in nano-oil lubrication. Tribology Letters, 35(2), 127-131.
  • Cortes, V., Sanchez, K., Gonzalez, R., Alcoutlabi, M., & Ortega, J. A. (2020). The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants, 8(1), 10. https://doi.org/10.3390/lubricants8010010
  • Mousavi, S. B., Heris, S. Z., & Estellé, P. (2020). Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Scientific Reports, 10(1), 1-17. https://doi.org/10.1038/s41598-020-62830-1
  • Beheshti, A., Huang, Y., Ohno, K., Blakey, I., & Stokes, J. R. (2020). Improving tribological properties of oil-based lubricants using hybrid colloidal additives. Tribology International, 144, 106130.
  • Wu, H., Zhao, J., Xia, W., Cheng, X., He, A., Yun, J. H., ... & Jiang, Z. (2017). A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International, 109, 398-408.
  • Elianov, O., Garusi, S., Rosentsveig, R., Cohen, S. R., Feldman, Y., Pinkas, I., ... & Shay, B. (2018). Deposition of metal coatings containing fullerene-like MoS2 nanoparticles with reduced friction and wear. Surface and Coatings Technology, 353, 116-125.
  • Hu, E. Z., Xu, Y., Hu, K. H., & Hu, X. G. (2017). Tribological properties of 3 types of MoS2 additives in different base greases. Lubrication Science, 29(8), 541-555.
  • Osim, W., Stojanovic, A., Akbarzadeh, J., Peterlik, H., & Binder, W. H. (2013). Surface modification of MoS 2 nanoparticles with ionic liquid–ligands: towards highly dispersed nanoparticles. Chemical Communications, 49(81), 9311-9313.
  • Tannous, J., Dassenoy, F., Lahouij, I., Le Mogne, T., Vacher, B., Bruhács, A., & Tremel, W. (2011). Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication. Tribology Letters, 41(1), 55-64.
  • Rajendhran, N., Palanisamy, S., Periyasamy, P., & Venkatachalam, R. (2018). Enhancing of the tribological characteristics of the lubricant oils using Ni-promoted MoS2 nanosheets as nano-additives. Tribology international, 118, 314-328.
  • Ripoll, M. R., Tomala, A., Gabler, C., Dražić, G., Pirker, L., & Remškar, M. (2018). In situ tribochemical sulfurization of molybdenum oxide nanotubes. Nanoscale, 10(7), 3281-3290.
  • Lahouij, I., Vacher, B., Martin, J. M., & Dassenoy, F. (2012). IF-MoS2 based lubricants: influence of size, shape and crystal structure. Wear, 296(1-2), 558-567.
  • Song, H., Wang, B., Zhou, Q., Xiao, J., & Jia, X. (2017). Preparation and tribological properties of MoS2/graphene oxide composites. Applied Surface Science, 419, 24-34.
  • Liu, L., Huang, Z., & Huang, P. (2016). Fabrication of coral-like MoS2 and its application in improving the tribological performance of liquid paraffin. Tribology International, 104, 303-308.
  • Charoo, M. S., Wani, M. F., Hanief, M., & Rather, M. A. (2017). Tribological properties of MoS2 particles as lubricant additive on EN31 alloy steel and AISI 52100 steel ball. Materials Today: Proceedings, 4(9), 9967-9971.
  • Baş, H. (2021). Investigation of effects of boron additives on performance of cam mechanisms. International Journal of Automotive Engineering and Technologies, 10(1), 60-66.
  • McKee, S. A., & McKee, T. R. (1932). Journal-bearing friction in the region of thin-film lubrication. SAE Transactions, 371-377.
  • Mushtaq, Z., & Hanief, M. (2021). Evaluation of Tribological Performance of Jatropha Oil Modified With Molybdenum Disulphide Micro-Particles for Steel–Steel Contacts. Journal of Tribology, 143(2). https://doi.org/10.1115/1.4047752
  • Xu, Z. Y., Hu, K. H., Han, C. L., Hu, X. G., & Xu, Y. F. (2013). Morphological influence of molybdenum disulfide on the tribological properties of rapeseed oil. Tribology Letters, 49(3), 513-524. https://doi.org/10.1007/s11249-012-0092-8
  • Srinivas, V., Thakur, R. N., & Jain, A. K. (2017). Antiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticles. Tribology Transactions, 60(1), 12-19. https://doi.org/10.1080/10402004.2016.1142034
  • Çuvalcı, H., & Baş, H. (2004). Investigation of the tribological properties of silicon containing zinc–aluminum based journal bearings. Tribology international, 37(6), 433-440.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hasan Baş 0000-0002-5653-3813

Publication Date January 15, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Baş, H. (2023). Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings. Turkish Journal of Engineering, 7(1), 42-48. https://doi.org/10.31127/tuje.1016153
AMA Baş H. Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings. TUJE. January 2023;7(1):42-48. doi:10.31127/tuje.1016153
Chicago Baş, Hasan. “Tribological Properties of MoS2 Particles As Lubricant Additive on the Performance of Statically Loaded Radial Journal Bearings”. Turkish Journal of Engineering 7, no. 1 (January 2023): 42-48. https://doi.org/10.31127/tuje.1016153.
EndNote Baş H (January 1, 2023) Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings. Turkish Journal of Engineering 7 1 42–48.
IEEE H. Baş, “Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings”, TUJE, vol. 7, no. 1, pp. 42–48, 2023, doi: 10.31127/tuje.1016153.
ISNAD Baş, Hasan. “Tribological Properties of MoS2 Particles As Lubricant Additive on the Performance of Statically Loaded Radial Journal Bearings”. Turkish Journal of Engineering 7/1 (January 2023), 42-48. https://doi.org/10.31127/tuje.1016153.
JAMA Baş H. Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings. TUJE. 2023;7:42–48.
MLA Baş, Hasan. “Tribological Properties of MoS2 Particles As Lubricant Additive on the Performance of Statically Loaded Radial Journal Bearings”. Turkish Journal of Engineering, vol. 7, no. 1, 2023, pp. 42-48, doi:10.31127/tuje.1016153.
Vancouver Baş H. Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings. TUJE. 2023;7(1):42-8.
Flag Counter