Research Article
BibTex RIS Cite

Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties

Year 2024, Volume: 8 Issue: 1, 107 - 115, 19.01.2024
https://doi.org/10.31127/tuje.1290655

Abstract

In this study, Cobalt (Co) doped Copper Oxide (CuO) films at different concentrations were deposited on glass substrates, using the Chemical Bath Deposition (CBD) method. The films were characterized by Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Ultra Violet-Visible Spectroscopy (UV-Vis.) and two-point contact method. The FESEM images showed that nanoplates formed increased in size and voids on the films surface decreased with increasing Co concentration. The XRD patterns revealed an increase in crystallite size with increasing (from 14.40 to 18.60 nm) Co concentration and no secondary phase was formed. The Energy-dispersive X-ray spectroscopy (EDS) spectra showed the presence of Co in the film composition with increasing concentration. The results of UV-Vis. spectroscopy showed that band gap values could be changed with Co doping and thus the CuO band gap could be adjusted with the Co doping. The temperature-dependent current-voltage measurement results obtained with the two-point contact method showed that activation energy levels increased (from 0.134 to 0.232 eV) with increasing Co concentration. It was also observed that the conductivity increased with increasing temperature.

References

  • Mishra, A. K., & Pradhan, D. (2021). Hierarchical urchin-like cobalt-doped CuO for enhanced electrocatalytic oxygen evolution reaction. ACS Applied Energy Materials, 4(9), 9412-9419. https://doi.org/10.1021/acsaem.1c01632
  • Kerli, S., & Kavgacı, M. (2021). Bakır oksit ince filmlere bor katkısının metil mavisi üzerindeki fotokatalitik etkisinin araştırılması. Journal of Boron, 6(2), 283-289. https://doi.org/10.30728/boron.797645
  • Yetim, N. K., Aslan, N., Sarıoğlu, A., Sarı, N., & Koç, M. M. (2020). Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. Journal of Materials Science: Materials in Electronics, 31, 12238-12248. https://doi.org/10.1007/s10854-020-03769-x
  • Johan, M. R., Suan, M. S. M., Hawari, N. L., & Ching, H. A. (2011). Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. International Journal of Electrochemical Science, 6(12), 6094-6104.
  • Bayansal, F., Şahin, O., & Çetinkara, H. A. (2020). Mechanical and structural properties of Li-doped CuO thin films deposited by the successive ionic layer adsorption and reaction method. Thin Solid Films, 697, 137839. https://doi.org/10.1016/j.tsf.2020.137839
  • Diachenko, O., Kováč Jr, J., Dobrozhan, O., Novák, P., Kováč, J., Skriniarova, J., & Opanasyuk, A. (2021). Structural and optical properties of CuO thin films synthesized using spray pyrolysis method. Coatings, 11(11), 1392. https://doi.org/10.3390/coatings11111392
  • Alzaid, M., Sajjad, M., Ali, K., Jamil, Y., Akbar, L., Sattar, A., Rızwan, A., Suhale, A., Ahmad, H., Nouman, C. M., Ghani, M. U., & Umair, A. (2020). Enhanced structural and optical properties of copper oxide for solar cell applications. Journal of Ovonic Research Vol, 16(6), 405-412.
  • Sadale, S. B., Patil, S. B., Teli, A. M., Masegi, H., & Noda, K. (2022). Effect of deposition potential and annealing on performance of electrodeposited copper oxide thin films for supercapacitor application. Solid State Sciences, 123, 106780. https://doi.org/10.1016/j.solidstatesciences.2021.106780
  • Dhanasekaran, V., Mahalingam, T., Chandramohan, R., Rhee, J. K., & Chu, J. P. (2012). Electrochemical deposition and characterization of cupric oxide thin films. Thin Solid Films, 520(21), 6608-6613. https://doi.org/10.1016/j.tsf.2012.07.021
  • Huang, M. L., Lu, S. G., Zhou, J. J., Luo, B. S., & Li, Y. H. (2022). Metallic coloration with Cu/CuO coating on polypropylene nonwoven fabric via a physical vapor deposition method and its multifunctional properties. The Journal of The Textile Institute, 113(7), 1345-1354. https://doi.org/10.1080/00405000.2021.1928995
  • Mahana, D., Mauraya, A. K., Pal, P., Singh, P., & Muthusamy, S. K. (2022). Comparative study on surface states and CO gas sensing characteristics of CuO thin films synthesised by vacuum evaporation and sputtering processes. Materials Research Bulletin, 145, 111567. https://doi.org/10.1016/j.materresbull.2021.111567
  • Musa, A. M. M., Farhad, S. F. U., Gafur, M. A., & Jamil, A. T. M. K. (2021). Effects of withdrawal speed on the structural, morphological, electrical, and optical properties of CuO thin films synthesized by dip-coating for CO2 gas sensing. AIP Advances, 11, 115004. https://doi.org/10.1063/5.0060471
  • Salam, S., Jose, B., Raphael, R., & Anila, E. I. (2021, February). Synthesis and characterisation of copper oxide thin films by double dip method. In IOP Conference Series: Materials Science and Engineering, 1070(1), 012011. https://doi.org/10.1088/1757-899X/1070/1/012011
  • Kabir, M. H., Ibrahim, H., & Billah, M. M. (2021, February). Effect of stabilizer on sol ageing for CuO thin films synthesized by sol-gel spin coating technique. In AIP Conference Proceedings, 2324, 030007. https://doi.org/10.1063/5.0037501
  • Baturay, S., Candan, I., & Ozaydın, C. (2022). Structural, optical, and electrical characterizations of Cr-doped CuO thin films. Journal of Materials Science: Materials in Electronics, 33(9), 7275-7287. https://doi.org/10.1007/s10854-022-07918-2
  • Wu, J., Gao, Q., Wei, G., Xiu, J., Li, Z., & Liu, H. (2021). Optical properties and laser-induced breakdown spectroscopy analysis of Al-or Co-doped CuO thin films prepared on glass by radio-frequency magnetron sputtering. Thin Solid Films, 722, 138572. https://doi.org/10.1016/j.tsf.2021.138572
  • Patwary, M. A. M., Ohishi, M., Saito, K., Guo, Q., Yu, K. M., & Tanaka, T. (2021). Effect of Nitrogen Doping on Structural, Electrical, and Optical Properties of CuO Thin Films Synthesized by Radio Frequency Magnetron Sputtering for Photovoltaic Application. ECS Journal of Solid State Science and Technology, 10(6), 065019. https://doi.org/10.1149/2162-8777/ac0a98
  • Reyes-Vallejo, O., Escorcia-García, J., & Sebastian, P. J. (2022). Effect of complexing agent and deposition time on structural, morphological, optical and electrical properties of cuprous oxide thin films prepared by chemical bath deposition. Materials Science in Semiconductor Processing, 138, 106242. https://doi.org/10.1016/j.mssp.2021.106242
  • Babu, M. H., & Podder, J. (2021). Bond length controlling opto-structural properties of Mn doped CuO thin films: an experimental and theoretical study. Materials Science in Semiconductor Processing, 129, 105798. https://doi.org/10.1016/j.mssp.2021.105798
  • Bayansal, F., Taşköprü, T., Şahin, B., & Çetinkara, H. A. (2014). Effect of cobalt doping on nanostructured CuO thin films. Metallurgical and Materials Transactions A, 45, 3670-3674. https://doi.org/10.1007/s11661-014-2306-1
  • Chaudhary, M., Singh, M., Kumar, A., Gautam, Y. K., Malik, A. K., Kumar, Y., & Singh, B. P. (2021). Experimental investigation of Co and Fe-Doped CuO nanostructured electrode material for remarkable electrochemical performance. Ceramics International, 47(2), 2094-2106. https://doi.org/10.1016/j.ceramint.2020.09.042
  • Singh, P., Singh, R. K. & Kumar, R. (2021). Journey of ZnO quantum dots from undoped to rare-earth & transition metal-doped & their applications. RSC Advance, vol. 11, pp. 2512-2545. https://doi.org/10.1039/D0RA08670C Qamar, M. A., Javed, M., Shahid, S., & Sher, M. (2022). Fabrication of g-C3N4/transition metal (Fe, Co, Ni, Mn and Cr)-doped ZnO ternary composites: Excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater. Materials Research Bulletin, 147, 111630. https://doi.org/10.1016/j.materresbull.2021.111630
  • Wang, B., Iqbal, J., Shan, X., Huang, G., Fu, H., Yu, R., & Yu, D. (2009). Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route. Materials Chemistry and Physics, 113(1), 103-106. https://doi.org/10.1016/j.matchemphys.2008.07.031
  • Zhang, S. G., Wen, L., Li, J. L., Gao, F. L., Zhang, X. W., Li, L. H., & Li, G. Q. (2014). Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres. Journal of Physics D: Applied Physics, 47(49), 495103. https://doi.org/10.1088/0022-3727/47/49/495103
  • Vinoth, S., Arulanantham, A. M. S., Saravanakumar, S., Rimal Isaac, R. S., Soundaram, N., Chidhambaram, N., ... & AlFaify, S. (2021). Enriched optoelectronic properties of cobalt-doped ZnO thin films for photodetector applications. Journal of Materials Science: Materials in Electronics, 32, 27060-27072. https://doi.org/10.1007/s10854-021-07077-w
  • Babu, M. M. H., Podder, J., Tofa, R. R., & Ali, L. (2021). Effect of Co doping in tailoring the crystallite size, surface morphology and optical band gap of CuO thin films prepared via thermal spray pyrolysis. Surfaces and Interfaces, 25, 101269. https://doi.org/10.1016/j.surfin.2021.101269
  • Bahoosh, S. G., Apostolov, A. T., Apostolova, I. N., & Wesselinowa, J. M. (2012). Theory of phonon properties in doped and undoped CuO nanoparticles. Physics Letters A, 376(33), 2252-2255. https://doi.org/10.1016/j.physleta.2012.05.042
  • Babu, M. H., Podder, J., Dev, B. C., & Sharmin, M. (2020). p to n-type transition with wide blue shift optical band gap of spray synthesized Cd doped CuO thin films for optoelectronic device applications. Surfaces and interfaces, 19, 100459. https://doi.org/10.1016/j.surfin.2020.100459
  • Yuksel, M., Pennings, J. R., Bayansal, F., & Yeow, J. T. (2020). Effect of B-doping on the morphological, structural and optical properties of SILAR deposited CuO films. Physica B: Condensed Matter, 599, 412578.
  • Marotti, R. E., Giorgi, P., Machado, G., & Dalchiele, E. A. (2006). Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells, 90(15), 2356-2361. https://doi.org/10.1016/j.solmat.2006.03.008
  • Oh, J., Ryu, H., & Lee, W. J. (2019). Effects of Fe doping on the photoelectrochemical properties of CuO photoelectrodes. Composites Part B: Engineering, 163, 59-66. https://doi.org/10.1016/j.compositesb.2018.11.041
  • Du, Y., Gao, X., & Meng, X. (2019). Preparation and characterization of single-phased n-type CuO film by DC magnetron sputtering. Physica B: Condensed Matter, 560, 37-40. https://doi.org/10.1016/j.physb.2019.02.037
  • Thi, T. V., Rai, A. K., Gim, J., & Kim, J. (2014). Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery. Applied surface science, 305, 617-625. https://doi.org/10.1016/j.apsusc.2014.03.144
  • Tauc, J., & Menth, A. (1972). States in the gap. Journal of non-crystalline solids, 8, 569-585. https://doi.org/10.1016/0022-3093(72)90194-9
  • Erat, S., Braun, A., Çetinkaya, S., Yildirimcan, S., Kasapoğlu, A. E., Gür, E., ... & Ocakoglu, K. (2021). Solution-Processable Growth and Characterization of Dandelion-like ZnO: B Microflower Structures. Crystals, 12(1), 11. https://doi.org/10.3390/cryst12010011
  • Bayansal, F., Çetinkara, H. A., Kahraman, S., Çakmak, H. M., & Güder, H. S. (2012). Nano-structured CuO films prepared by simple solution methods: plate-like, needle-like and network-like architectures. Ceramics International, 38(3), 1859-1866. https://doi.org/10.1016/j.ceramint.2011.10.011
  • Nguyen T. T. H., Qui, T. L., Xuan, N. D., Hanh, N., Chinh, D. H. & Lin, V. D. (2005). Preperation and Characterization of Cobalt Doped ZnO Films. Proceedings of The Eighth German-Vietnamse Seminar on Physics and Engineering, Erlangen, April 3-8, 2005.
  • Lee, J. H., Ko, K. H., & Park, B. O. (2003). Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. Journal of crystal growth, 247(1-2), 119-125. https://doi.org/10.1016/S0022-0248(02)01907-3
  • Jundale, D., Pawar, S., Chougule, M., Godse, P., Patil, S., Raut, B., ... & Patil, V. (2011). Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization. Journal of Sensor Technology, 1(2), 34-36. https://doi.org/10.4236/jst.2011.12006
Year 2024, Volume: 8 Issue: 1, 107 - 115, 19.01.2024
https://doi.org/10.31127/tuje.1290655

Abstract

References

  • Mishra, A. K., & Pradhan, D. (2021). Hierarchical urchin-like cobalt-doped CuO for enhanced electrocatalytic oxygen evolution reaction. ACS Applied Energy Materials, 4(9), 9412-9419. https://doi.org/10.1021/acsaem.1c01632
  • Kerli, S., & Kavgacı, M. (2021). Bakır oksit ince filmlere bor katkısının metil mavisi üzerindeki fotokatalitik etkisinin araştırılması. Journal of Boron, 6(2), 283-289. https://doi.org/10.30728/boron.797645
  • Yetim, N. K., Aslan, N., Sarıoğlu, A., Sarı, N., & Koç, M. M. (2020). Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. Journal of Materials Science: Materials in Electronics, 31, 12238-12248. https://doi.org/10.1007/s10854-020-03769-x
  • Johan, M. R., Suan, M. S. M., Hawari, N. L., & Ching, H. A. (2011). Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. International Journal of Electrochemical Science, 6(12), 6094-6104.
  • Bayansal, F., Şahin, O., & Çetinkara, H. A. (2020). Mechanical and structural properties of Li-doped CuO thin films deposited by the successive ionic layer adsorption and reaction method. Thin Solid Films, 697, 137839. https://doi.org/10.1016/j.tsf.2020.137839
  • Diachenko, O., Kováč Jr, J., Dobrozhan, O., Novák, P., Kováč, J., Skriniarova, J., & Opanasyuk, A. (2021). Structural and optical properties of CuO thin films synthesized using spray pyrolysis method. Coatings, 11(11), 1392. https://doi.org/10.3390/coatings11111392
  • Alzaid, M., Sajjad, M., Ali, K., Jamil, Y., Akbar, L., Sattar, A., Rızwan, A., Suhale, A., Ahmad, H., Nouman, C. M., Ghani, M. U., & Umair, A. (2020). Enhanced structural and optical properties of copper oxide for solar cell applications. Journal of Ovonic Research Vol, 16(6), 405-412.
  • Sadale, S. B., Patil, S. B., Teli, A. M., Masegi, H., & Noda, K. (2022). Effect of deposition potential and annealing on performance of electrodeposited copper oxide thin films for supercapacitor application. Solid State Sciences, 123, 106780. https://doi.org/10.1016/j.solidstatesciences.2021.106780
  • Dhanasekaran, V., Mahalingam, T., Chandramohan, R., Rhee, J. K., & Chu, J. P. (2012). Electrochemical deposition and characterization of cupric oxide thin films. Thin Solid Films, 520(21), 6608-6613. https://doi.org/10.1016/j.tsf.2012.07.021
  • Huang, M. L., Lu, S. G., Zhou, J. J., Luo, B. S., & Li, Y. H. (2022). Metallic coloration with Cu/CuO coating on polypropylene nonwoven fabric via a physical vapor deposition method and its multifunctional properties. The Journal of The Textile Institute, 113(7), 1345-1354. https://doi.org/10.1080/00405000.2021.1928995
  • Mahana, D., Mauraya, A. K., Pal, P., Singh, P., & Muthusamy, S. K. (2022). Comparative study on surface states and CO gas sensing characteristics of CuO thin films synthesised by vacuum evaporation and sputtering processes. Materials Research Bulletin, 145, 111567. https://doi.org/10.1016/j.materresbull.2021.111567
  • Musa, A. M. M., Farhad, S. F. U., Gafur, M. A., & Jamil, A. T. M. K. (2021). Effects of withdrawal speed on the structural, morphological, electrical, and optical properties of CuO thin films synthesized by dip-coating for CO2 gas sensing. AIP Advances, 11, 115004. https://doi.org/10.1063/5.0060471
  • Salam, S., Jose, B., Raphael, R., & Anila, E. I. (2021, February). Synthesis and characterisation of copper oxide thin films by double dip method. In IOP Conference Series: Materials Science and Engineering, 1070(1), 012011. https://doi.org/10.1088/1757-899X/1070/1/012011
  • Kabir, M. H., Ibrahim, H., & Billah, M. M. (2021, February). Effect of stabilizer on sol ageing for CuO thin films synthesized by sol-gel spin coating technique. In AIP Conference Proceedings, 2324, 030007. https://doi.org/10.1063/5.0037501
  • Baturay, S., Candan, I., & Ozaydın, C. (2022). Structural, optical, and electrical characterizations of Cr-doped CuO thin films. Journal of Materials Science: Materials in Electronics, 33(9), 7275-7287. https://doi.org/10.1007/s10854-022-07918-2
  • Wu, J., Gao, Q., Wei, G., Xiu, J., Li, Z., & Liu, H. (2021). Optical properties and laser-induced breakdown spectroscopy analysis of Al-or Co-doped CuO thin films prepared on glass by radio-frequency magnetron sputtering. Thin Solid Films, 722, 138572. https://doi.org/10.1016/j.tsf.2021.138572
  • Patwary, M. A. M., Ohishi, M., Saito, K., Guo, Q., Yu, K. M., & Tanaka, T. (2021). Effect of Nitrogen Doping on Structural, Electrical, and Optical Properties of CuO Thin Films Synthesized by Radio Frequency Magnetron Sputtering for Photovoltaic Application. ECS Journal of Solid State Science and Technology, 10(6), 065019. https://doi.org/10.1149/2162-8777/ac0a98
  • Reyes-Vallejo, O., Escorcia-García, J., & Sebastian, P. J. (2022). Effect of complexing agent and deposition time on structural, morphological, optical and electrical properties of cuprous oxide thin films prepared by chemical bath deposition. Materials Science in Semiconductor Processing, 138, 106242. https://doi.org/10.1016/j.mssp.2021.106242
  • Babu, M. H., & Podder, J. (2021). Bond length controlling opto-structural properties of Mn doped CuO thin films: an experimental and theoretical study. Materials Science in Semiconductor Processing, 129, 105798. https://doi.org/10.1016/j.mssp.2021.105798
  • Bayansal, F., Taşköprü, T., Şahin, B., & Çetinkara, H. A. (2014). Effect of cobalt doping on nanostructured CuO thin films. Metallurgical and Materials Transactions A, 45, 3670-3674. https://doi.org/10.1007/s11661-014-2306-1
  • Chaudhary, M., Singh, M., Kumar, A., Gautam, Y. K., Malik, A. K., Kumar, Y., & Singh, B. P. (2021). Experimental investigation of Co and Fe-Doped CuO nanostructured electrode material for remarkable electrochemical performance. Ceramics International, 47(2), 2094-2106. https://doi.org/10.1016/j.ceramint.2020.09.042
  • Singh, P., Singh, R. K. & Kumar, R. (2021). Journey of ZnO quantum dots from undoped to rare-earth & transition metal-doped & their applications. RSC Advance, vol. 11, pp. 2512-2545. https://doi.org/10.1039/D0RA08670C Qamar, M. A., Javed, M., Shahid, S., & Sher, M. (2022). Fabrication of g-C3N4/transition metal (Fe, Co, Ni, Mn and Cr)-doped ZnO ternary composites: Excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater. Materials Research Bulletin, 147, 111630. https://doi.org/10.1016/j.materresbull.2021.111630
  • Wang, B., Iqbal, J., Shan, X., Huang, G., Fu, H., Yu, R., & Yu, D. (2009). Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route. Materials Chemistry and Physics, 113(1), 103-106. https://doi.org/10.1016/j.matchemphys.2008.07.031
  • Zhang, S. G., Wen, L., Li, J. L., Gao, F. L., Zhang, X. W., Li, L. H., & Li, G. Q. (2014). Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres. Journal of Physics D: Applied Physics, 47(49), 495103. https://doi.org/10.1088/0022-3727/47/49/495103
  • Vinoth, S., Arulanantham, A. M. S., Saravanakumar, S., Rimal Isaac, R. S., Soundaram, N., Chidhambaram, N., ... & AlFaify, S. (2021). Enriched optoelectronic properties of cobalt-doped ZnO thin films for photodetector applications. Journal of Materials Science: Materials in Electronics, 32, 27060-27072. https://doi.org/10.1007/s10854-021-07077-w
  • Babu, M. M. H., Podder, J., Tofa, R. R., & Ali, L. (2021). Effect of Co doping in tailoring the crystallite size, surface morphology and optical band gap of CuO thin films prepared via thermal spray pyrolysis. Surfaces and Interfaces, 25, 101269. https://doi.org/10.1016/j.surfin.2021.101269
  • Bahoosh, S. G., Apostolov, A. T., Apostolova, I. N., & Wesselinowa, J. M. (2012). Theory of phonon properties in doped and undoped CuO nanoparticles. Physics Letters A, 376(33), 2252-2255. https://doi.org/10.1016/j.physleta.2012.05.042
  • Babu, M. H., Podder, J., Dev, B. C., & Sharmin, M. (2020). p to n-type transition with wide blue shift optical band gap of spray synthesized Cd doped CuO thin films for optoelectronic device applications. Surfaces and interfaces, 19, 100459. https://doi.org/10.1016/j.surfin.2020.100459
  • Yuksel, M., Pennings, J. R., Bayansal, F., & Yeow, J. T. (2020). Effect of B-doping on the morphological, structural and optical properties of SILAR deposited CuO films. Physica B: Condensed Matter, 599, 412578.
  • Marotti, R. E., Giorgi, P., Machado, G., & Dalchiele, E. A. (2006). Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells, 90(15), 2356-2361. https://doi.org/10.1016/j.solmat.2006.03.008
  • Oh, J., Ryu, H., & Lee, W. J. (2019). Effects of Fe doping on the photoelectrochemical properties of CuO photoelectrodes. Composites Part B: Engineering, 163, 59-66. https://doi.org/10.1016/j.compositesb.2018.11.041
  • Du, Y., Gao, X., & Meng, X. (2019). Preparation and characterization of single-phased n-type CuO film by DC magnetron sputtering. Physica B: Condensed Matter, 560, 37-40. https://doi.org/10.1016/j.physb.2019.02.037
  • Thi, T. V., Rai, A. K., Gim, J., & Kim, J. (2014). Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery. Applied surface science, 305, 617-625. https://doi.org/10.1016/j.apsusc.2014.03.144
  • Tauc, J., & Menth, A. (1972). States in the gap. Journal of non-crystalline solids, 8, 569-585. https://doi.org/10.1016/0022-3093(72)90194-9
  • Erat, S., Braun, A., Çetinkaya, S., Yildirimcan, S., Kasapoğlu, A. E., Gür, E., ... & Ocakoglu, K. (2021). Solution-Processable Growth and Characterization of Dandelion-like ZnO: B Microflower Structures. Crystals, 12(1), 11. https://doi.org/10.3390/cryst12010011
  • Bayansal, F., Çetinkara, H. A., Kahraman, S., Çakmak, H. M., & Güder, H. S. (2012). Nano-structured CuO films prepared by simple solution methods: plate-like, needle-like and network-like architectures. Ceramics International, 38(3), 1859-1866. https://doi.org/10.1016/j.ceramint.2011.10.011
  • Nguyen T. T. H., Qui, T. L., Xuan, N. D., Hanh, N., Chinh, D. H. & Lin, V. D. (2005). Preperation and Characterization of Cobalt Doped ZnO Films. Proceedings of The Eighth German-Vietnamse Seminar on Physics and Engineering, Erlangen, April 3-8, 2005.
  • Lee, J. H., Ko, K. H., & Park, B. O. (2003). Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. Journal of crystal growth, 247(1-2), 119-125. https://doi.org/10.1016/S0022-0248(02)01907-3
  • Jundale, D., Pawar, S., Chougule, M., Godse, P., Patil, S., Raut, B., ... & Patil, V. (2011). Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization. Journal of Sensor Technology, 1(2), 34-36. https://doi.org/10.4236/jst.2011.12006
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Samed Çetinkaya 0000-0002-7476-9467

Early Pub Date September 15, 2023
Publication Date January 19, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Çetinkaya, S. (2024). Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering, 8(1), 107-115. https://doi.org/10.31127/tuje.1290655
AMA Çetinkaya S. Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. TUJE. January 2024;8(1):107-115. doi:10.31127/tuje.1290655
Chicago Çetinkaya, Samed. “Solution‐based Fabrication of Copper Oxide Thin Film Influence of Cobalt Doping on Structural, Morphological, Electrical, and Optical Properties”. Turkish Journal of Engineering 8, no. 1 (January 2024): 107-15. https://doi.org/10.31127/tuje.1290655.
EndNote Çetinkaya S (January 1, 2024) Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering 8 1 107–115.
IEEE S. Çetinkaya, “Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties”, TUJE, vol. 8, no. 1, pp. 107–115, 2024, doi: 10.31127/tuje.1290655.
ISNAD Çetinkaya, Samed. “Solution‐based Fabrication of Copper Oxide Thin Film Influence of Cobalt Doping on Structural, Morphological, Electrical, and Optical Properties”. Turkish Journal of Engineering 8/1 (January 2024), 107-115. https://doi.org/10.31127/tuje.1290655.
JAMA Çetinkaya S. Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. TUJE. 2024;8:107–115.
MLA Çetinkaya, Samed. “Solution‐based Fabrication of Copper Oxide Thin Film Influence of Cobalt Doping on Structural, Morphological, Electrical, and Optical Properties”. Turkish Journal of Engineering, vol. 8, no. 1, 2024, pp. 107-15, doi:10.31127/tuje.1290655.
Vancouver Çetinkaya S. Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. TUJE. 2024;8(1):107-15.
Flag Counter