Cervic cancer classification using quantum fuzzy set
Year 2024,
Volume: 8 Issue: 4, 687 - 694, 31.10.2024
Rajesh Dennison
,
Giji Kiruba Dasebenezer
,
Ramesh Dennison
Abstract
In this sophisticated world living with CIN cervic cancer is much jeopardy. Cancer is a stochastic (random) process. So, in that CIN in initial stage is not jeopardy. It is totally because of hazardous malign cells. Using its modality in image is selected in existing system only automated classification depends on input image. But in proposed methodology the innovative alludes the jeopardy of CIN cancer is found using the size of /area of nucleus or cytoplasm. This proposed methodology was developed with an algorithm to find CIN area/size. This research work establishes a Cervic Cancer Classification Using Contour Based on Area of Nucleolus and Cytoplasm in Cells (CBANC) which classifies noise spread images into any one of five phases. A similarity measure produces 90% efficiency in proposed system as par with inefficient existing system which fetches us 50%. By pragmatic application it is proved that CBANC with fuzzy is better than Baye’s. This can be accomplished by removing well distinct consistency features and choosing preeminent classifier. Proposed work can extend with 3D input images for future research. It produces mightiest parameter shape and intensity which is very essential for 3D approach. The inference of proposed system can extend the latest classifier engines for more accuracy. It can easily predict more than 90% accuracy will be there. And also derive cancer growing and after therapy for cancer shrinking algorithm will be used for 2D or 3D CIN cancer classification. The outcomes of the proposed methodology CBANC shows that better when compared to the existing methodology like Bayes. It can be implemented in the real world environments of the medical field.
References
- Bakır, H. (2024). Optimal power flow analysis with circulatory system-based optimization algorithm. Turkish Journal of Engineering, 8(1), 92-106.
- Cheng, S., Liu, S., Yu, J. J., Rao, G., Xiao, Y., Han, W., Zhu, W., Lv, X., Li, N., Cai, J., & Wang, Z. (2021). Robust whole slide image analysis for cervical cancer screening using deep learning. Nature Communications, 12, 1-10.
- Rahaman, M. M., Li, C., Yao, Y., Kulwa, F., Wu, X., Li, X., & Wang, Q. (2021). DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Computers in Biology and Medicine, 36, 104649.
- Chen, H., Liu, J., Wen, Q. M., Zuo, Z. Q., Liu, J. S., Feng, J., Pang, B. C., & Xiao, D. (2021). CytoBrain: Cervical cancer screening system based on deep learning technology. Journal of Computer Science and Technology, 36, 347–360.
- Leo, M., Carcagnì, P., Signore, L., Corcione, F., Benincasa, G., Laukkanen, M. O., & Distante, C. (2024). Convolutional neural networks in the diagnosis of colon adenocarcinoma. AI, 5(1), 324-341.
- Holmström, O., Linder, N., Kaingu, H., Mbuuko, N., Mbete, J., Kinyua, F., Törnquist, S., Muinde, M., Krogerus, L., Lundin, M., Vinod, D., & Johan, L. (2021). Point-of-care digital cytology with artificial intelligence for cervical cancer screening in a resource-limited setting. JAMA Network Open, 4(3), e211740.
- Lin, H., Chen, H., Wang, X., Wang, Q., Wang, L., & Heng, P. A. (2021). Dual-path network with synergistic grouping loss and evidence driven risk stratification for whole slide cervical image analysis. Medical Image Analysis, 69, 101955.
- Jia, D., He, Z., Zhang, C., Yin, W., Wu, N., & Li, Z. (2022). Detection of cervical cancer cells in complex situation based on improved YOLOv3 network. Multimedia Tools and Applications, 81(6), 8939–8961.
- Jia, D., Zhou, J., & Zhang, C. (2022). Detection of cervical cells based on improved SSD network. Multimedia Tools and Applications, 81(10), 13371–13387.
- Iizuka, O., Kanavati, F., Kato, K., Rambeau, M., Arihiro, K., & Tsuneki, M. (2020). Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Scientific Reports, 10, 1504.
- Iquran, H., Alsalatie, M., Mustafa, W. A., Abdi, R. A., & Ismail, A. R. (2022). Cervical Net: A novel cervical cancer classification using feature fusion. Bioengineering, 9(10), 578.
- Kim, J., Kang, J. K., & Kim, Y. (2022). A low-cost fully integer-based CNN accelerator on FPGA for real-time traffic sign recognition. IEEE Access, 10, 84626–84634.
- Chen, W., Gao, L., Li, X., & Shen, W. (2022). Lightweight convolutional neural network with knowledge distillation for cervical cells classification. Biomedical Signal Processing and Control, 71, 103177.
- Mahyari, T. L., & Dansereau, R. M. (2022). Multi-layer random walker image segmentation for overlapped cervical cells using probabilistic deep learning methods. IET Image Processing, 16(11), 2959–2972.
- Liu, G., Ding, Q., Luo, H., Sha, M., Li, X., & Ju, M. (2022). A new publicly available dataset for deep learning-based segmentation of cervical cytology images. Computers in Biology and Medicine, 150, 106194.
- Zhao, Y., Fu, C., Xu, S., Cao, L., & Ma, H. F. (2022). LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images. Computers in Biology and Medicine, 145, 105500.
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.
- Wollmann, T., & Rohr, K. (2021). Deep consensus network: Aggregating predictions to improve object detection in microscopy images. Medical Image Analysis, 70, 102019.
- Byra, M., Dobruch-Sobczak, K., Klimonda, Z., Piotrzkowska-Wroblewska, H., & Litniewski, J. (2021). Early prediction of response to neoadjuvant chemotherapy in breast cancer sonography using Siamese convolutional neural networks. IEEE Journal of Biomedical and Health Informatics, 25(3), 797–805.
- Huang, P., Wang, J., Zhang, J., Shen, Y., Liu, C., Song, W., Wu, S., Zuo, Y., Lu, Z., & Li, D. (2021). Attention-aware residual network based manifold learning for white blood cells classification. IEEE Journal of Biomedical and Health Informatics, 25(4), 1206–1214.
- Huang, J., Yang, G., Li, B., He, Y., & Liang, Y. (2021). Segmentation of cervical cell images based on generative adversarial networks. IEEE Access, 9, 115415–115428.
- Manna, A., Kundu, R., Kaplun, D., Sinitca, A., & Sarkar, R. (2021). A fuzzy rank-based ensemble of CNN models for classification of cervical cytology. Scientific Reports, 11(1), 1–18.
- Rahaman, M. M., Li, C., Yao, Y., Kulwa, F., Wu, X., Li, X., & Wang, Q. (2021). DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Computers in Biology and Medicine, 136, 104649.
- Bhatt, A. R., Ganatra, A., & Kotecha, K. (2021). Cervical cancer detection in pap smear whole slide images using ConvNet with transfer learning and progressive resizing. PeerJ Computer Science, 7, e348.
- Subarna, T., & Sukumar, P. (2022). Detection and classification of cervical cancer images using CEENET deep learning approach. Journal of Intelligent and Fuzzy Systems, 43, 3695–3707.
Year 2024,
Volume: 8 Issue: 4, 687 - 694, 31.10.2024
Rajesh Dennison
,
Giji Kiruba Dasebenezer
,
Ramesh Dennison
References
- Bakır, H. (2024). Optimal power flow analysis with circulatory system-based optimization algorithm. Turkish Journal of Engineering, 8(1), 92-106.
- Cheng, S., Liu, S., Yu, J. J., Rao, G., Xiao, Y., Han, W., Zhu, W., Lv, X., Li, N., Cai, J., & Wang, Z. (2021). Robust whole slide image analysis for cervical cancer screening using deep learning. Nature Communications, 12, 1-10.
- Rahaman, M. M., Li, C., Yao, Y., Kulwa, F., Wu, X., Li, X., & Wang, Q. (2021). DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Computers in Biology and Medicine, 36, 104649.
- Chen, H., Liu, J., Wen, Q. M., Zuo, Z. Q., Liu, J. S., Feng, J., Pang, B. C., & Xiao, D. (2021). CytoBrain: Cervical cancer screening system based on deep learning technology. Journal of Computer Science and Technology, 36, 347–360.
- Leo, M., Carcagnì, P., Signore, L., Corcione, F., Benincasa, G., Laukkanen, M. O., & Distante, C. (2024). Convolutional neural networks in the diagnosis of colon adenocarcinoma. AI, 5(1), 324-341.
- Holmström, O., Linder, N., Kaingu, H., Mbuuko, N., Mbete, J., Kinyua, F., Törnquist, S., Muinde, M., Krogerus, L., Lundin, M., Vinod, D., & Johan, L. (2021). Point-of-care digital cytology with artificial intelligence for cervical cancer screening in a resource-limited setting. JAMA Network Open, 4(3), e211740.
- Lin, H., Chen, H., Wang, X., Wang, Q., Wang, L., & Heng, P. A. (2021). Dual-path network with synergistic grouping loss and evidence driven risk stratification for whole slide cervical image analysis. Medical Image Analysis, 69, 101955.
- Jia, D., He, Z., Zhang, C., Yin, W., Wu, N., & Li, Z. (2022). Detection of cervical cancer cells in complex situation based on improved YOLOv3 network. Multimedia Tools and Applications, 81(6), 8939–8961.
- Jia, D., Zhou, J., & Zhang, C. (2022). Detection of cervical cells based on improved SSD network. Multimedia Tools and Applications, 81(10), 13371–13387.
- Iizuka, O., Kanavati, F., Kato, K., Rambeau, M., Arihiro, K., & Tsuneki, M. (2020). Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Scientific Reports, 10, 1504.
- Iquran, H., Alsalatie, M., Mustafa, W. A., Abdi, R. A., & Ismail, A. R. (2022). Cervical Net: A novel cervical cancer classification using feature fusion. Bioengineering, 9(10), 578.
- Kim, J., Kang, J. K., & Kim, Y. (2022). A low-cost fully integer-based CNN accelerator on FPGA for real-time traffic sign recognition. IEEE Access, 10, 84626–84634.
- Chen, W., Gao, L., Li, X., & Shen, W. (2022). Lightweight convolutional neural network with knowledge distillation for cervical cells classification. Biomedical Signal Processing and Control, 71, 103177.
- Mahyari, T. L., & Dansereau, R. M. (2022). Multi-layer random walker image segmentation for overlapped cervical cells using probabilistic deep learning methods. IET Image Processing, 16(11), 2959–2972.
- Liu, G., Ding, Q., Luo, H., Sha, M., Li, X., & Ju, M. (2022). A new publicly available dataset for deep learning-based segmentation of cervical cytology images. Computers in Biology and Medicine, 150, 106194.
- Zhao, Y., Fu, C., Xu, S., Cao, L., & Ma, H. F. (2022). LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images. Computers in Biology and Medicine, 145, 105500.
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.
- Wollmann, T., & Rohr, K. (2021). Deep consensus network: Aggregating predictions to improve object detection in microscopy images. Medical Image Analysis, 70, 102019.
- Byra, M., Dobruch-Sobczak, K., Klimonda, Z., Piotrzkowska-Wroblewska, H., & Litniewski, J. (2021). Early prediction of response to neoadjuvant chemotherapy in breast cancer sonography using Siamese convolutional neural networks. IEEE Journal of Biomedical and Health Informatics, 25(3), 797–805.
- Huang, P., Wang, J., Zhang, J., Shen, Y., Liu, C., Song, W., Wu, S., Zuo, Y., Lu, Z., & Li, D. (2021). Attention-aware residual network based manifold learning for white blood cells classification. IEEE Journal of Biomedical and Health Informatics, 25(4), 1206–1214.
- Huang, J., Yang, G., Li, B., He, Y., & Liang, Y. (2021). Segmentation of cervical cell images based on generative adversarial networks. IEEE Access, 9, 115415–115428.
- Manna, A., Kundu, R., Kaplun, D., Sinitca, A., & Sarkar, R. (2021). A fuzzy rank-based ensemble of CNN models for classification of cervical cytology. Scientific Reports, 11(1), 1–18.
- Rahaman, M. M., Li, C., Yao, Y., Kulwa, F., Wu, X., Li, X., & Wang, Q. (2021). DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Computers in Biology and Medicine, 136, 104649.
- Bhatt, A. R., Ganatra, A., & Kotecha, K. (2021). Cervical cancer detection in pap smear whole slide images using ConvNet with transfer learning and progressive resizing. PeerJ Computer Science, 7, e348.
- Subarna, T., & Sukumar, P. (2022). Detection and classification of cervical cancer images using CEENET deep learning approach. Journal of Intelligent and Fuzzy Systems, 43, 3695–3707.